A TAXONOMIC REVISION OF THE CAMPONOTUS WIEDERKEHRI AND PERJURUS SPECIES-GROUPS (HYMENOPTERA: FORMICIDAE)

by S. O. Shatpuek \& A. J. Mcabtiler ${ }^{+*}$

Abstract

Summary 90, 29 November. 20022 levet. Thereen species are inchoded in the whederkithispecies group, six of aviel ate newly described while synonyms lestaceipes Smith, lamunculus veconkenses Sintschi ind mvoporus (Clark), wersicolar Clark and niestekehri Forel (with its new synonyms tenticndams Kirby, larrmentus Wheeler and wisderketrit hevidion Borel). The perimus species group contains the single rare species periures sp. Hoy.

K'Y Wosns: Hymenoptera, Inomicidae, Formicinate, speciss-groun, Compontus:

Introduction

If this paper we revise species of ants in the newly delined wiedorkehri and perjurus species groups of the gonus Campomotus. Fourleen species are recogmised, seven of which are described for the first time; four previously valid species are treated as synonyms. These groups are restricted to Australia and contain species which range from common to rare and from widespread to restricted in distribution. They are most abundant and species rich in semi-atid regions and atl are apparently ground nesting, faxonomically, the species treated Ficre ware previously placed in the subgenera Myrmophyma, Myrmusauliss, Myrmoturba and Tancombromex: placements which were made when the specics were originally described and have not been discussed since. During this study it has beeome quite clear that the current subgeneric classificarion within Camponoths is chaotic and neat-pothtess, species here placed in the wederkehri species group share similarities in overall body shape and size including the placement of the compound eyss and the configuration of the mesosoma and petiole: In addition, all share a eluster of elongate hairs on the base of the mentum. This cluster is unique in the gemus and strongly suggests they are monophyletic. At present. the higher-level elassification within Camponotus is poorly understood and until the cotire genus is examined more closely, it is inappropriate to speculate on

[^0]retationships amone species, Cumponotur gondectomus is assaciated with ia lealhopper and C. terebrums is associated with a butcefly. For an overview of the subfamily (Fomicinae) and genus (Camponotus) in Australia see Shattuck (1999).

Methoods

Mearwemtents

Size and shape characters were quantified and are reported as lengths or indices. Measurements were made with a stereo mieroseope using a dual-asis stage micrometer wired to digital readouts. The following measurements and indices are reported.
Cl Cephalic index: IfW/HL.
HL Maximum head lenglh in hill lace view. measured from the anterior-most point of the clypeal margin to the midpoint of a line drawn across the posterior margin of the head.
HW Maximum head width in full face view excluding the eyes.
ML. Mesusomal lengit measured from the anterior margin of the pronotal collar to the posterior extension of the propodeum Jobes.
MTL Maximum length of mid tibia, excluding the proximal part of the articulation which is received ink the distal end of the femor?
Si Scape index: SL/HW,
SL Lenget of the scope (Tirst antennal segment) exeluding the basal neek and condyle

Lencalion of marerval examinad

AMSA, Austratian Museum, Sydney, New South Wales: ANIC, Australian National Insect Collection. Cumberra, ACT: BMNH, The Natural llistory Museum. London, UK, MC/C. Muscumi of

Comparative Foolngy Harvard University, Cambridge, Massachusetts. USA: MIING. Muséun d'Histoire Naturelle, Geneva, Sivitzerland; MVMA. Museum of Victorid, Abbotsford. Victoria; SAMA. South Sustralian Museum. Adelaide, South Ausiralia: WAMP. Westerin Australian Museutr, Perth Westem Australia.
Mos! of the not-type material is it ANIC and SAMA.

Callectors af matental cxamumed.

A $\$ \mathrm{~S}, ~$ A A Simpson: ACK, A. C, Kistner, AHB, A. 11. Purbidge: NiM, A. J. McArthur: AJO, A, Joliosoni: $\triangle K N$. A. K, Nousala: ALY, A. I. Ven; AMD. A. M. Douglas: AML, A. M. Lesi AMM. A. M. Morgan: ARP, A K. Peilic: AWE, A. W Forbes, A/E, A. Zeitz; BBL, B. B. Lowery: BHO, B Höldobler: BPI, B, Pike: BRII. B. R. Huthins: CBA. C. Barrett: CHW. C. H. Watse CNI. C. Nilsom: ('TM, C. T. Mereavieh: C'WA. (: Wumer: DCl, D. C, I? Rente: DCO, D, Cox. [xDA, D, Dividsoos DIII, D. Hirst: DFKK 1). H. Kisther: DSC. D sichulti; RRB. E. B. Britton EBR. E. Broomherid: EDF E D. Edwards. HFR 1. F. Kiek: EGM F. G. Mathews; ELO, F Locke; T'TR, LI, Troughton, EXP, South Austalian Muscum Fixpedition: RYE, F. Yeatman: FAC, F. A. Cudmore: FSC. F Schatere FSH F. Shepherd: COA. A. Camplocll: GCM. G C. Medtin: GF. C. IL Gross; GFR G Friend, GJM, G\% J. Mular GLH, 0, L. Homic: GPB, G. P, Browning; GR1. Civiffith Collection South Ausiratian Mascum: HBW. H. B. White: HCS.. Hom Centenary Survey NVMA: HHR. H. Ftahn; HHE, H. Heatwole, HMC, II. Mt, Cane, HOF, H, O, Fleteher; HOW, II. Owens; HRE, H. Reynotds; IIWE. H. Wesselmank IAR, 1. Archibald: IF B. 1. F B. Common: IGE I. Gee; IVA. I. Valentime: JAF, J. A Vorresr; JAH, I. A. Herridge: IAR, J. Archibald; JRA, I. Baldersom: 113S. I. B. Stackey: 1CG. I C Gondico JCM 1. C. Myers JDI, I. D. Frakine; JDI, I, E, DJXom: DM. I. D, Mąer; jED. I, E. Dowse; MII: d. L. Fechan: JFF, J, F Field JFL J. Findey: JoO I. C. O. Tepper: JIAA, J Hawkins: ILA. I. Lawrence, INC. J. McAreavey; JRB, I. R. B. Low, JRE 1. Revid:JRU, J. Ruhle ISH. .I. Shaw: ISM, I, Smith: J1H. I. Thumer: JWI, J. Wilkinson: KCA, K ("asparson: KDA, K Davey: KMA, K. Maitin: KMC, K. Mckelson: KRO, K, Roili: KRP K. R. Pullerl: KTR, K. T. Richards; L.HI, L. Hicels LPK, L. P. Kelsey: IQU, L. Queale: MAA. M. A. Adams; MDA M. Davies; MIT. Mitebell: M.ID M. J. [rouglas: MLS, M. L. Simpsom; MMIA. M Malpital: MPF: M. Peterson; MSLL, M \& 1 phon: $\mathrm{NBI}_{2} \mathrm{~N}$. B. Tindalec; Ne S. Nature Colservation Socicty of South Australia Ines, NLA, N. Lawrences PAL. P. Aitken, PCO, P, Copley, P (iF.. P. Gec: PGR.

I!. Gremstade, PHU, P. IU ASom, PIF, P. I. Fargher: PIML P I. M Greenstade: PPL, P. Plym; PRB, P. R. Birks: PSW, P, S. Ward RBH. R. B. Ilalliday: RBR. R. Brandu: RCC. R. ('. C'matler: R 1 N N, R. D. Nutting, REL. R. Elder; RFO, R. Foster, Rlor. R. H. Crozicy, RIIM, R, H. Men, RIB, R. J, Bathell; RJK, R, J. Kohout; RJW, R. J, Whice: RRA, R Raven; RSI, R. Smith: RSM. R S. Mefones: RVS. R. V. Southeott: RWI, R. W. Taylor: SAII, S. A. Ilarringon: S \triangle NPGLS, S. Aust, Nariontal Parks and Wildife, Goyders Lagoon Sumey: SANPNOPS, Suuth Australian Namonal Parts and Wildite, North Olary Plains Survey: SANPNS. South Australiau Natunal Parks and Wildlifo, Nullarbor Survey: SANPPITI, South Australian National Patks and Weldite, Pitanlialjura Lands Survey: SANPSDE. South Australian National Parks and Wildife. Stoncy Deset Survey: SANPSOPS South Ausualian National Parks and Wilditis, South Olary Plains Survey: SANPVS. South Ausiraiam National Parks and Wildile Vertebrate Survey. SANPWI'RS South Australian National Parks and Wildife, Wespern Flinders Ranges Survey: SANPYS, South Australian National Parks and Widdife, Yellabinoa Survey, SBA, S. Barker: SDO S. Domnellan; SLF S. Lewer: SMO. S Morrisen: SOS. S. O. Shatuck; SRM, S. R. Motteri TAW T. A. Weir: TGR, 'T: Greaves: TGW, T. G. Wood: TRO. T. Robinspli: WAI W. A, Low: WISII. W. [s. Hilchuock: WCC. W. C. Crawky: WDD. W. D. Dodd: WIIC. Waterhouse Club, Sout Australtan Miseum: WKH, W. K. Head: WI B, W. L. Brown: WI N, W. L Nhtting: WMC, Western Mining \& Royal Ciougriphical Sociely Expedition: WMW. W. M. Whecter YCC. Y. C. Crozier.

Gemus (amprimotik Mayr 1861

Definition of the C: wiederkehri shectes shomp

Members of the C: whaterkehri species gronop ban be separated from nther Australian Camponomus by the presence of a cluster of four of more distbect elongste curved or "-J"-shaped hairs on the hase of the mentum (neat the posterior region of the baccal cavity) in all worker castes (Fig. I). In a few species related to C equipuiam similar thars are presemt bul these are scattered along the leneth of the mentum rather than being present as a pusterion cluster.

Commienes wathin the C. wiederkehri spesios grouy
The C. Hederkehri species group can be divided into lout complexes as follows. While it is likely that these complexes represent monophyletic groups fand there is no evidence that they do not synapomorphies supporting these groupings have not been sought in Lhis study. If is more appropriate for these studies to be developed as a horfatic study of the geous.

1. Auracimetus complex: Inclades C. arematus. atrocicons, oweraide, selosus and versioulons. This complex is defined by the presonce of a distinct and angular metanolal gronye in mino workers which is depressed (sometimes onty stighty) below the emtenor region of the propodetim (Figs 3,,$~ 9$),
2. Eerinetipes complex. Includes C, cerisetpes. dommeflem. prosseti and rufonigrus. In this confiplex the posterior section of the mesunotum is weakly but distinctly convex immediately anterfor of the metanotal groove (ntore se in minors. less so in majers) and the metanotal groove 711 minors varies from a distinct angle an is shallow concenvity (Fig s $12,14,18,34,36$).
3. pastearthubur complexi Includes C. postempathes. In this complex the enlite thesosoma in minor workers is strongly arehed. laeks a inctanotal groave and the pasterior face of the propodeun is onfly weakly differentiated from the dorsal face (17ig. 31): in major workers the posterior ewners of the head taper rearwares into hlund protuhetancers (Figs 28. 29).
 terehrans and wheducketiri, In this compley the posterior section of the mesonotum is fial for nearly sol immedialety anterior of the metanotal groove and the metanotal gronve in minor workeps is absems or weakly developed (Fige 33. $47.58)$

This कpecies group is recognised by having the head produced upwards so that its attachmient to the promotum is wall below its upper margin (Fig. of). It has if reduced number of hais on the nemtum sompered to species of the wedorkehri group. approachirg the atratgement foond in relatives of C whippitur, This group contains a single speciss, C netumys. deseribed below.

Key to workers of the Camponotus wiederkelri

 spocies group1. Feed hairs present on dill surfaces of tibitie . ? ? I rect hairm absent fron outer surfaces of thbiac. imer surface will a double-row (allhouglt appressed pubescence may be present
. $=\ldots4$
2 Metanotal groove in minos worker a distinet but sometmes shallow traugh (Fig. 42); known only from the kimbertey region of northem Western Australia (Fig. 43) wum........................रetossas Melanoral groove in minor worke! wrakly developed (Fig. 23) or absent (Fig. 47 ; known only from southem Australia (Figs 24.48) 3
2. Namber of erect hairs on propodeum greater than 40; pubescence on head and gaster abundant
and with individual hairs overlappong; summitol petiolar node in protile rounded in winor workers (lig. 23), a blunt angle in major workers (Fig, 21) goulditmus Namber of erect hairs on propodetur less than 25: pubescence oo head and enster spatse and with individual hairs gencrally non-overlappong or at most only slightly overlapping; summut of petiolar node in profile angular in both minor and major workers (Fiss 45, 47) \qquad serelyams
3. Entire mesosoma io laleral view strongly arched, lacking a metanotal groove and with the postetion face of the propodeum only weakly dillerentiated from the dorsal lace (Figs 29. 31): posterior eormers of head of major worker tapering rearward into blunt protuherances (Figs
 Mesosoma in lateral view llat or at most with the pronotum and mesonoam weakly arehed and separated trom the propodeum by a tweak angle (figg. 14) or a distinct, angutar of concave meianotal groove (Fig. 9), the posterior fice of the propodeom always separated from the dorsal face by a rounded angle (Fig. 14): posterolateral comets of head reunded in majors ($\mathrm{Ti} \mathrm{s}=33,34$).
4. Metanotal groerve in minors depressed beton the anteriot region of propodeum (Figs 8. 4): metanctal groove in majors angular (Fig. 6): dorsum of petiolar bode in minors broadly or weakly convex. Tal or wakly concave, the anterior face must shorter than the posterior face (E) E.s 8.. 9) : petiolar mode in majurs broadly rianded above (Tig 6) . 0 Metanotal groove io mipors athsent (Fin. 58) or angular (Fie, 14) and ahways epen with the antertar region of propudeum: metanotal gronve in majors is broad, shatlow angle (tig. I?): dorsum of petiolar node in minors angular or broadly rounded, the anterioy face at most only slightly shorter than the posterior lace (Fig. 14): pectolar node in majors angular ahove ([ix. 12)
5. Dorsal and anterior regions of pronutum dark red-blisck. distinetly darker than the yellow-red mesonotum and propodern?urenanus Entire mesosomat tmiform in colour, varying from dark red-black to black \qquad
6. Flongale (overtapping) and dense pubeseonec present on dorsum of head mesusoma, gaster and uitiace. \qquad mwlysae Short (10 on-overtappinge and scaticred pubescence present on dorsum of herd, mesosoma. gasta and tibiace
.
7. Anterior region of lorst gastral tergite dark reddisis black or black, similar in colour oo propodeum: metanotal eroave in minors dislinct
and depressed well below the anterior region of propodeum (Figs 8, 9) \qquad adurecinctras First and second gastral tergires red, distinatly lighter in colour tban the redaish black propodeum: metanotal groove in minors weakly to moderately depressed below the anterior region of the propodeum (Figs 52, 53). \qquad ressicalor-
8. Posterion section of mesonotum flat (or nearly so) imnediately anterior of metanotal groove, metanotal groove absent or weakly developed in minors (Fig. 58): anterior clypeal margin in majors projecting with a staight central region separated from lateral regions by distinct angles (Fig, 55) \qquad wiederkchm Pusterior section of mesonotum weakly bur distinctly convex immediately anterior of metanotal groove (more so in minors, less so it mạiors): metanotal groove varying froni a distinet angle to a shaltow concavity in minors (Figs 14, 18, 36); anterior clypeal margin in majors broadly convex across entire widttr (19.1) 10
9. Propodeum with at most 4 clongate erect hairs which are limited to the angle between the dorsal and posterior faces. \qquad domnellani Propodeum generally with more than 10 ereet hairs which are always scatlered along the entire dorsal surface \qquad . 1
10. Metanotal grove well delined and angular (Fige 39); black head contrasting with red mesonotur ..rufionigrous
Metanotal groove a weakly defined concavily (Figs 14, 36); head same colour as mesonorum (hoth cither red or black).
11. Scapes relatively short (in minors. $\mathrm{SI}<1.5$) (Fig. 15): peliolar node of minots generally more upright and narrower (Fig. 14)certselpes Scapes relatively long (in minors, $\mathrm{S} 1>1.4$) (1Fig. 15); petiolar node of minors generally lower and broader (Fig 36)asem

Species of the C, wiederkerhi specien sroup
Camponotus arenatus sp nov (F1GS 2-4)

Whercital bxamsined

Holoone Mibor worker from South Australia: Hambidge [labelled as Hambridged National Park. 17 Wecember 1970, E. B. Britten (ANIC),

Petraypres IWu hinor workers. same data as holotype (ANIC, SAMA).

Ohth materiol examined

Northern Territory: 15 km S Alice Springs (PJM). South Ansiralia: Cowell (BBBL); Maralinga (Gif(i):

Fig. 1. Underside of the bead showing distinetive eluster of elingate curved or "J"-shaped hairs (indicated by artow) on die mentum.

ligs 2-3 © emenatus workers. Fis. 1 Head of minor worker. Pepa 3. Mesosoma and petiokent mino worker

Yumbarra (P, 26 km N Inita Rock Waters (ITOW), Western Austratia: 20mi. W Sandstone on Mt Magnet Rd. (AMD \& MID).

Wocker diagnosis (miner workert

Tibiac and seapes lacking enect hatis. in minor workers metanotal groove depressed below levef of the anterior region nit the propodeum; doraal surface of node broadly convex, its anterior tace much shorter than the pusterior fiec (Fig. 3). Dorsal and anterior regions of the pronotum dark red-black, distinetly darker than the yellow-red mesonotum and

Fig. 4. Distribution of C ubenams material examined during this study
propodeum. This species is superficially similar to Ci donnellani in averall colour patlern but differs in Whe larger stre of the minor worker and the depressed metanotal groove.

Deverpton (minor wowker)

Aitemor chpeal margin broadly convex (Fig. 2). Dorsal surface of pronotom weakly convex and separated from the weakly convex mesonotum by a shallow angle; metanotal groove slightly but distinctly depressed below the level of the anterion propodetin: propodeum uniformly and weakly convex and witbou a distinct angle, ratio of dorstam to declivity about 1.5 (F1g. 3). Petiolar node with a strort anterior face which is weakly differentiated from the broadly convex upper surface, the rear face indistinguishable from the upper surface (Fig 3). Erect hairs moderately abundant ofr all surfaces of the head and dorsal surfaces of the mesosoma, petrolar node and gaster. absent from seapes and tibiae. Head and anterior regions of pronolum btack, posterolateral pronotum (imonediately above the fore corate). mesonotum, propodeumr petiote and legs yellow-red gaster varying from cotirely yellow-ied to a combinarion of the yellow-red anteriorly and red-black posteriorly.

Moasymements

Miner warke $(n=5)$. CI $0.77-0.74$; IIL 1.947 mm 2.20mm: HW $1.50 \mathrm{~mm}-1.74 \mathrm{~mm}$. ML 3.45 mm -3.81 mm ; MTL $2.2 \mathrm{hmm}-2.47 \mathrm{~mm}$: S1 $1 .+9$ 1.59= Sl 2.38 mm 2.59 mm 。

Commonts

This tmeommon species is known from a linited number of minot workers, it banges from soutfcentral Soulh Australia, north to soulhern Northern

Tertitory and west-central Western Australia (Fig-4). The only biological information is provided by the single worker collected by B. B. Lnwery. It was swept from mallee on red sand.

E.2ymulogy

From atrena, alluding to the sandy natme of the known collection sites of this species.

Camponotus aurvcinctus (1: Smith)
(F1GS 5-10)
Formía utrocimter Smith. 1858:39.
Camponolus aumcinctus Mayr, 1886:355,
Cumpomones mades Frogeatt, 1890: 390; Clark, 1930a: 22 (queen described, worker redescribed). New symonymy.

$$
\text { Campontorts'sp. } 8 \text { - Imai bl al.. 1477:364. }
$$

Malerial examined

Cimponous aturacimms Worker holotype or syntypes From Adelade, South Australia. A single specimen (miner worker) in BMN1I is labelled as the type of this species. Howvever, this specimen was acquired in 1870, several years after the original description was published. It is eurrently not known whether the aequisition date is in error or the type specimen is lost, For the purposes of this study this specimen is considered a type specimen for this name.
Cumponolus müctes. Syntypes from Illamurta. Northem Temitory (I worker (omissing from point) and 1 queen in $\triangle \mathrm{MS} \wedge ; 7$ workers, 1 queen and I make in MCZC: I worker in MVMA; 3 workers in BMNH (with an additional 6 workers labelled as "C, Australia. [Tom Coll. 96-37" and bearing a Type label).

Other matlerial examined.

New South Wates: 12 km S Combah (PSW). 45 km N Balranald (SOS); Ascot Vale (RSM): Black Hill Creek (RHM): Broken Hill (FSH): Broken Hill Airport (RSM): Marakana RS (BBL); Mount Gipps (RIIM): Mundi Mundi, ni: Broken Hill (PJM \& [VA): Pinnacles, 12 mi . W Broken Hill (BBL); Pooncacic, W. Smith property (RHC \& YCC \& AKN); Sifucton (PJM). Northern Territory: 15 km \& Alice Sprimes (PJM); 23mi. N Narwietooma IIS (RSM \& JED): 33 kin E Ayers Rock (JEF): 7km W Curtin Springs (SOS): Madade (HOF): Kings (reek Sin (SDO): nr. syers Rock (BBL); Old Andado, c. 15 km EbyN Andato 1 HS (JEF): Uhara NP 15 km ESE (HCS) Queensland: Memcomic Lake (RRA): Cunnamulla (BBL): Foxes Ck. (GCA), Sandringham (PJM). Soulh Ausiralia: 10km NW Emu Junction (JAI): 10km WSW Mt. Playford Mumpeowie (IRE): 10mu. S Loxton (BBL) 11 km ENE Mrabuna Hill. Mumpeowic (JRE), 14 k.m SW Taplan (SANPVS); 14 km SbyW Beltana (JEF); 14 km

5

L'igs 5-9. C. atrocinchas workers, Fig. 5. Head of major worker. Vig. 6. Mesosoma and petiole of major worker. Fig. 7. Itead of minor barker. Figs 8-9. Merasoma and petiole of minor worker.

Fig. 10. Distribution ol C aurucinctus material examined during this study.

WNW Remmark (KRP): 1 km N Vokes Hill junction (JAF), 1 km W Emu Camp, Victoria Desert (PIM); 2.5 km N Limestone dam (SANPSOPS); 26km SSE Illintiitja (SANPPITJ); 30 mi E Farina, Mt. Lyudhurst (ETR); 31 km NW Renmark (KRP); 3km W Entu Camp, Victoria Desert (PIM): 4,8km SE Coongic, Coongic Lakes Study site IOE (JRE); 40km W Vokes Hill Junct (IAF); 40km WNW Emu. Victoria Desert (PJM), 40mi. SW lrou Knob (JRE): 45km WNW Emu, Victoria Desert (PJM); 4km NE Marroo IJill, Cowarie (PRI3); 5 km SW Farina (SANPSOPS): 60 km E Vokes Hill, Victoria Deselt (P.IM); 6km W Koonchera, Birdsville Track (PJM \& JAF); 70 km E Emen, Victoria Desert (PJM); 9km ESE Wapalanchie Tank, Cowarie (TRO); Adelaide (GRI); Adelaide (JGO); Alton Downs old IIS. c. 48 km SW Birdsville (IEF); Ampeima Ilills 10.5 kin E (SANPPITI): Andamooka Ranges (MIT \& (GFG); Approdinna Attori Knolls 86.3 km SW (SANPSDS); Barton Siding (AML); Beda Hill (JAF); Bimbowric 2 km NE (SANPNOPS); Brooklield Conservation Park (Site No. 1) (SOS):
e. Wkn S8E Poochera (KWT \& RJB): c, 22kns N Beltana (JEF): Calperum VE Boubdary (AJME (ambrif (PJM); Cheesman Peak 13.2 km NW (SANPPITJ), Clifton Hills Dutstation (JAF \& DHOI): (bongee Lakes (JRE); Coongie Lake (DHH), (aongie Lakes (JRE): Cordillo Downs Str (SANPSDS); Cordillo Downs Sth (SANPSOPS). Corrobinnie Will. Eyre Penin. (KCA): Dangeali CP. Red Tank Dam (A.JM); Darke Reske, Eyre Pell (BBL): E Pumi Bore at junction of French Track and Rig Rd, Simpson Deserl(JAF): Fblu C'amp, Vietoria Desert (PMM): Emef Junction 10 km NW (JAF). Ftarduna Sto. (JTH): Parina 5 km SW (SANPSDS $)$. Gammon Ra. NP. Bolcanoona area (AJM); Giawler Ranges (PJM); Cflonelg (WBH): Gum Lagoon (EGM \& J\EF; Hamilon (K (RBR); Hamilion Sm(WKIt); Hincks NP (EBB): 1lintitia 23 km WSW (SANPPITJ): Iron Knoh 40 miles SW (EFR) K Kendes (AWE) Killiparu CP (SLE); Kimba (PJM \& IVA): Kimbat edge of Pinkanillime (.P. (FSC) Koonamore (P / M) Konamoce 9 km E (SANPNOPS); Koonamore, Nillinghoo (PJM): Kooneherd Waterhole 0.25 km S (SANPGLS): Kounchera. Birdsyille Track (PJM \& JAF): Kopsi Fyre Pen. (PJM): Kunytjanu 25 kin NW (SANPPIJ): L. Meramangye: Victoria besers (PIM): L. Torrens. Mr. Beda Hill (JAF): Lake Appadare 2 km S (WHCI: Lake Callaboma (ADE): Lake (ialles CP (BPL): Lake Palankarinus (JIH): Litte Pine 1 lill c. 32 mi . SW Whyulla (EBB ; Mabel (reck (PGR); Marpoo Waterhole (PGE \& IGE): Marsetla Dlill 3.6 km SE (SANPSDS); Maryiona Hiil I1.5kin ESE (SANPPTJI: May Hill 0.3 km WNW (SANPSDS): Mamecollina Bare (ISH) Moganvale. Domegali CP (A.MI): Mount Lindsay 3.1 km WNW SSANPPITJ: Mi, Gimson. SE Woometis (P.JM), Me. Siturt, ur. salt lake. N. Evre Pen (IAF); Munyareo ($\mathrm{P}, 7 \mathrm{~km}$ SSW Moonable HS 37 km ir Whyalla (WKH): NW Yaninee, Eyme Penin. (KCA): Olympe Dam (LGM \& CWA); Paney, int. Piok Lake Gawler Ranges (WTHCY; Pinkawilinio CP, Eyne Pat. (IAF): Pimbacles Mue (RLIM); Pipalyatiara 27.5 km NE (SANPPITJ): Poachera (BAlo): Purni Fore 77 km I' (SANPSDS): Pumi Bore, SW Simpson Desert (PJM): Radiam Hill (PAD), S end of L, Windabout (BRL); S Koonchert. Berdsville Track (P.IM \& JAI) : Sol Marn Ra. \& 5km NW MI, Kintore (SANPPIT,); Serpentine L., Sireat Victoria Desert (PJM): Seppentine Lakes (JAF): Smpront Desert (IDSC); Sinclain Gap (PIUU): Slockyard Plain (A.IM): Japlan 14 Kis SW (SANPVS): Thirty Thomsand Tank (GCM); Lomahawk Dam (JAF): Lrioily Well das Trimityt (EXP); Ungamima 反ockhole (SANPPITI), Vokes Hill l km N (JAF): Waltatmoa 16 km W (SANPPLIJ. Yelpawaralinna Waterhole 76 km NNW (SANP(iLS). Victoria: Gkm ESE Hatroh
(ALY): Bantierton (CNL); Ilatah (ALY): Lake Mournpall, Hatlah-Kulkyne Nal. Park (SOS): Millewa South Bore (ALY): Halls Creek (RMA): Mungilli Claypan (KDA) Western Australia: 11 km W Terhan W-H (PJM \& HHE); I mii. NMt, Aloysils (RSM \& JED): 163 km SFibyF Broome (1FB): 16 km W Mt. Aloysius (JEF): Lokm W Mt. Aloysius (JEF \& TWE); 19mi. N NI. Aloysus (RSM \& JED): 20mi W Sandstone on Mt. Magenct Rd (AM \& MJD); 22 mi . WSW ML. Forres (RSM \& IFD); 24 km SSW Turee Creck HS (MPE): 28mi. NE Camegie IIS (RSM \& JED): hokm SWbyW Docker River. Northern Territory (JEF \& TWE): Canning Stock Rosule (EXP): Cavenagh Ra, (KTR); Komalda Caye (WHC): Meckatharra-Billiluna Pool Camning Stock Rouke (EXP); Norseman (BBL): Norseman Area (AM\& MDD); Sir Fredrick Ra (KTR)

Worket diugnosbry

Tibrae lacking erect hairs. In minors, merabotad groove depressed below the level of the anterior region of the pogodeum; dorsal surface of petiotar node refatively long and lhat, ita antemor face much shorter than the posterior face ($5 i g e$ K, Y). Mesosoma uniform in colour, varymg from dark red-black io black, anterior eegion of first gastad tergite similar in colour to propodeam. gastral tergites often with the Irailing edge golden yellow: the golden colour (when present) varyiug in width from a narow band to involving noost if the tergite.

Deacriplion imaïur nowker)

Anteriot dypeal margin weakly convex (fig. 5). Dursul surfaces of prohotum and mesonotum eonves and separated by is shallow angle: propodeom uniformly convex and wishout a distinet atgle; petiolar node with distinet minerior and pusteriom faces, its upper surface varying from a browd blun angle to uniformly convex and sumetimes with the medial section hearly fat (Fig. b). Ereet hairs absent from scapes. peliole and tifvae, absent or a Few seatered hairs ou the outline of head and dorsum of niesosomas and gaster, underside of head with none 4 ibout 30. Body varying from dark red to redblack, the heas and dorsal surfaees of promotome and mesomotum sometimes darker than the lateral mesomotum. proporewt legs and petiole; gaster reddish black with yellow-gold bandiog along the puslerion edge of each segment which varies from being absers to involving the enfirevisible portion of the sogment.

Dowapheys (minere uad hed

Abterior slypeat mangio convex to broadly ungular (lig. 7). Dorsal sarfaces of pronotum and mesonolum convex and separaled by a shatlon, broad angle, the postetior metanotum ending in the
theranotal groove; metarotal zeaove distimel. separated from the anterior propodeum by a short face which varius from steep (Fig, of to gentle (figg. 4): dorsal and posterior faces of propodeun Mal to weakly concave und separated by a broud, gentle angle, Antarior lace of petiolar node short and separated from the dorsal face by a sharp angle. dorsal lace etongate and fat to weakly coneave and soparated from the posterion face by a broad, rounded angle, posterior face that (Figs 8, 9). Erect hairs absent fom scapes and legs, absent or with a lew seallered hairs on the ontiline of head. besosoma, petiole and gaster: underside of head with up to about 30 hairs. Body varying from ned to red-black, head and sometimes propodeum. petiole and middle and hond legs usually slightly lighter than the pronotum: gaster dark reddish black and sometiares with yellow-gold banding along the posterion margon of exch segment which tailise from narrow to imvolfites the entire visible segment. in whoth oase the gatater is completely yellow-mold.

Deasmemarals

Whaters in 201, (I 0.KO (minots) - 1.22 (majors): H1L $2.04 \mathrm{~mm}-4.05 \mathrm{~mm}$: HW $1.63 \mathrm{~mm}-$
 3.14 mm ; SI 0.03 (majors) - 1.53 (minors): SL $2.50 \mathrm{~m} 0 \mathrm{~m}-3,04 \mathrm{~m}$) m .

Comments

('ampsonolus midas established by Frogenaut (1846). is hele considered a symonym of © antacons the Frageat made no mention al C. aurcitictues in his deseription of C. mekes-and it is unclear if he was aware of anmeinems, and il'se. how it differed trons his species, Clark (1930a) redescribed (i. miahs and separated it from C. currocitictus "by the shape of the thorax and node, and the coloum at the gaster. In S. sumpeincta the postcriser magein of the segoments is fatrowly yellow. In midax the whole of the segments, excopt the base of the first, are entirely bright galden vellow." Liffortumaty, the curfently avalable material shows that all of these chatacters are highly variable. Many show on east-west clinal pallem. with several changing rapidly across cental south Australia. for example, C : atracinuors specimens fron Westert Australia are exemerally datker and harier (espeetally on the underside of the head) compared to those from eastern Soutl Australia eastward. The western populations alse lend to have broader bands uf gotden yellow on the gaster with completely black gasters essentially unknown. In contrast. eastern populations otten have narrow bands or task banding conpletely, the gasters heing miformly
blach. Other ebaracters, such as the depth of tic metamotal groove and the relative leneth of the petiolar oode. vary considerably within local areas or within single nest series. This variation sutgests that a siogle widespread and variable specjes is involved rather than two (or more) separate species.
Canpomotus anrocincius is known from southcentral Queensland, westem New South Wales and north-westem Victoria west through Somh Austratia and southern Northern Territory to west-central Westem Ausiratia (Fig. 101, it is ground nesting, shows a strongz preferenee for sandy soils and is most often found as foragers during daylight hours. One of is ($, ~, \mathrm{M})$) has observed this species at Steckyard Plain and Danggali Conservation Park, Soulh Ausiralis. forugang in the vicinily of Camponatus towdoms The karyotype of this species was discussed by Inaii et al. (1977) (as Cimmponoms: 4p. 8)

> Gimponolus cervineipen Clark
> (FIGS I - 6 ($)$

Gamponoltes (Mormophyma) cemserfere Clark. 11138: 378.

Mataral examined

Simpores Six workers from N. und of Reevesty Island, South Australia, December. 1936, J, Clark (3 in AXIC, 3 in MVMA).

Quher material examined

Northern Texitory: 15 km \& Nlicm Springs (PIMA: NW Alice Sprongs. Atarlinga (PJM), South Anstralia: 10 km WSW Lameroo (PJM): 6 km NW Mt. Pleasant (PJM): Bamlf, Courong (P.JM); Bolait (PIM): Bridgewater (PIM); Cblea (BBL); Calco. 30 kin SE Streaky Bay (BBL); Cape Bauer (RWT \& RJB \& BBL) (Tifton Hills Outstation (IAF \& DHI) ; Corong. Coshatoo (PJM) : Coorong. 5 km WNW Pitlodiry IIS (P.MM) Eyru Pen. Ekon W Wenilla (PJM) Intros Natl. Pk. Vork Poninsula (PJM): Kangaroh Is., 1 km N Breakneck Ck. (PIM): Kangaroo ls., N Breaknecte R. (PJM); Mt Compuss ($B B L$) : MI, Lofty ($B B L$) : M . Rescuc CP. Jitomy \& Weil (JAF): Porl Parlain (BBL): Sandy Creok. Mi. Lolty Ranges (EYF): Poochera (PSW); Streaky Bay (BRL): Victor Harbour (PJM). Western Austraita: 20 km \& Condingup (SOS): 53 mi . Flys Ravensthope (RWT): Cape Arid NP. Yokenten Buy (AllB): Coalmine Beach, Walpole- Nomahon Natl. Pk (ILA \& NLA); Esperance area (BBL); Green's Poat, William Bay Natl Pk (SOS): Junana Rock. 9k.n NW ML. Ragged (RWT): Ocean Beach; Demmark (BBI): Redgate Beactr, LecuwinNaturaliste Natl $\mathrm{P}^{\mathrm{s} k}$ (SOS): Waterloll Beach. Willian Bay Nat Pk (SoS); Willam Bay Rd. Demmarh (BBL): William Bay, Denmark (BEL)

11

Figs 11-14. C. ceriscipes workers. Fig. 11. Head of major worker. Fig. 12. Musosoma and petiole of major worker. Fig. 1.3. Head ol minor worker. Fige. 14. Mesosoma and petiole of minor worker.

15

Fig. 15. Distribution of scape length versus head width for C. ceriscipres and C: prosseri minor workers.

Worker diagnosis

Scapes relatively short (in minors, S] <1.5) (Fig. 15). Posterior section of mesonotum weakly but distinctly convex immediately anterior of the metanotal groove (more so in minors, less so in majors); metanotal groove a shallow, weakly delined concavily in minors (Figs 12, 14). Petiolar node

Fig. 16. Distribution of C rerise pes material examined duing this study.
angular or broadly rounded above, the anterior face at most only slightly shonter than the posterior face (Figs 12.14). Tibiac and scapes lacking erect hairs, propodeum with more than 10 erect hairs (occasionally with fewer) which are scattered along the entire dorsal surlace (never limited to near the propodeal angle as in Conmellani). Anterior
cypeal margin in majors broadly convex across iss entice width. Head same colour as mesonotum (both eathor red or black).
This species is most often contused with the morphologically similar (: prosseri. The surest way to separate these-species is based on seape length. In larger minor workers of C^{\prime}. ceriseipes the seape is relatively short compared with similar sized C. prossen workers (Fig. 15), Note, however, that this difference is minimal or non-existem in smaller workers due to allometry in this character. Other characters uselul in separating minor worhers of these taxa are the generally higher ald natfower petiolar node (Fig 14) and shiny integumen in C. eceriseifes eompared to the lower and broader node ($\mathrm{Fig}, 36$) and duller integument in C . prossert. The shape of the node works well for the majority of minor workers while the shoniness of the integumen! is more problematic due to the highly qualitative mature of. and greater variation in. the character.

Lexeription (mafor werker)

Pronotum and mesonotum gently convex metanotum distinet. propodeal dorsum weakly convex, sometinges a litule stronger near metanotum: angle woll rounded and indistinct, anterior face of petiotar node stratght, summil narrowly rounded. posterior face straigha, Feebly concave near summit (1/ig. 12). Anterior margin of clypeus wakly convex. scamely projecting, with a weak earina (Fig, 11). l'osterior margion of head, underside of head. mesosonna. node and gaster with scattered long setaetitame sudd seapes lacking erect hairs. Head rad to. blach, scape rad to blacks finnculos dark browns, pronotum red to dark brown; mesonotum red to dark browin; petisle red to black; gaster very dark brown to black; leges red to black.

Aescription amimer woskes

Anterion elypeal margin convex, carina distimet (Tig. 13). Pronotum and mesonotam an cxen, brond convexity, metanotum indistinet: anteriof region of propodeum feebly concave, posterior region straight. angle disine and widely rounded, ratio of dorsum todeelivity near 2 (Fig. 14). Anterion face of petislar hode straght. inelined honvard. summit rounded. posterion face straight (fig.14). Postarior margin of head, underside of head, mesosoma, petiole and gaster with scattered lone setas, titriac and seapes. lacking ereet hars. Head red to hlack. scape red to black, limeculus dark brown; promolum, mesonolum, propodeum and periole each red to black; gaster very dark hrown as black; legs red to hlack.

Mequmemstos

 $111.1 .42 \mathrm{~mm} 3.31 \mathrm{~mm}: 11 \mathrm{~W} 1.25 \mathrm{~mm}-4.06 \mathrm{minc} \mathrm{MI}^{2}$
$2.36 \mathrm{~mm}-4.28 \mathrm{~mm}$: MTL $1.59 \mathrm{~mm}-2.58 \mathrm{~mm}: 1 \mathrm{~mW}$ 1.07 mim 2.45 min: S1 0.68 (major) - 1.42 (minor) SL $175 \mathrm{~mm} \quad 2.58 \mathrm{~mm}$.

Remarks

The specimens here treated as betonging to this species show considerable vatation in body colous, The head and mesosoma range hom uniform red to uniform black with essentially all internediate combinations displayed among the availatio material. There is a weak trend for the Western Australtan specimens to be darker and a distinct Frend for the Northern Territory specimens to be lighter. However, humerous specimens bridge the gaps between these colour forms, especially within Western Australia, and specimens nearly identical to those from the Norihern Tertitory uccur in Soulh Australia along with more typical workers.

Camponatws coprseipes ranges from easiem South Australian west along the coast through Westerio Australka, with two known collections from souflem Northern Territory. It has been found in coastol sandplain heath. coastal serub, dimestome mallecs. Low serub on at dry ridge and on vegetated coastal sand dunes. Nests have heeil found tonder rocks and in open sand and workers bave been colleded from pitlall fraps and while beating vegetation. The species has been found with mymmecophilides (Orthoptera) at Mount Compass, South Australis, by 13. B. Lowery.

C'anmonotus dommellanispy, nov(FIGS 17-19)

Mutertal evamured

Ifoluthye. Minor worker from Kinga Creck Station. Northern Territary, 23 August, 1992, S. Dammellan. sandhill (ANIC).

Pomblyen Paer minot workers same data is holotype (ANLC. SAMAI.

Ohter matheral examined

Northern Tevritory: 29km ESI: Uluru. 1 Haru Kata Tjuta (JWA); 15 km ESE Uluru, Lleru-Kam Tjuta (JWA). South Australia: 3.1 km WNW Mt. Lindsay (SANPPITJ): E shore Serpentinc Lakes (JAF).

Wonker aliagnosis

Propodeum with at most 4 clongate orect hairs near the angle between the dorsal and pesterior facks. Peonotunt and mesonotum ilaty eonvex, metanotal grove indistinct, anterior region of propodeal dorstm feebly concave straight posterion. Petiolar mosic broadty rounded atrove, ils anterion races at most only

 worker. I'ig. 18. Mesonomat and peisule of mirror worke:

 durines his soudy.
shagtly shorter than the posterior face (Fig . 18) . Tibias and seapes lacking ereet setac. Anterior clypalal margin lecbly projecting. broadly convex acrose its whole width.
 overall coldour piltern but difiers in the smallep siece
of the minors and the flatter mesosomal dorsum with a less distinct metanotal groove. It may also be conlised with smaller, paler workers of C. ceribeifes. but differs in having lewer erect hairs on the propodeal dorsum.

Descriptien (miner morker)

Pronotum and mesonotum gently convex, metanotal grove indistinct: anterior resion of propodeun fechly concave then straight, laching an angle between the dorsal and posterior faces, tatio dorsum to dectivity about 3 (Fig. 18). Anterior faee of petiolar mode about as long as dorsal face and separated from it by a moderate eonvexity: dorsal face weakly comven and separated trom the posterior face by a broad rounded angles posterior laze flat (Fig. 18). Elongate erect hats scattered on all smfaces of head (inchoding underside), mesosoma, node and gaster, absent from seapes and tibiac. Anterior elypeal margin convex broadly angular (lig. 17). Head, mesosoma and petiole red with upper surfaces of head, pronotum and sometimes mesonotum infuscated with dark red-black, legs redblack basally, ral distally; gaster dark red-black.

Measuramems

 $2.58 \mathrm{~mm} ; \mathrm{MIL}$ I. 78 mm ; SI 1.32; SL 1.85 mm .

Remarks

C"amponmotus dimmelhani las been encountered a limited number of times in north-wesken South Australia and south-western Northern Tertiony. It has teen collected from a samd hill in association with Triodia spp. in the Greal Vietorian Deser of southem Northen Territory. Little else is known of its hiology.

Simology

Named after Dr Steve Donneltans of the South Austatian Museum, the collector of this species.

Campramonas gomidiannis torel
(ГICS20-24)

Ahererisel cremmand

Sumpers. Tha medium workers from Sea Lake. Victoria, bolh badly damenged (MING i).

Ohber matherial examined

New South Wales: Baltanald (IWI): c. 2okm E Luston (R.IK). Nurthern Territory: Dllamırta Spr CP (IAF \& DHI). South Anstralia: loknn NE Chilpuddic. Gawler Ranges (P.IM): 10km NW ('cdunta (RFO) : 11 km E Poochera (RW'T \& R.IB \&

Vigs 211-23. (gomfliums workers. Fig. 20. Ilead of majom worker. Fig. 21. Mesosoma and putiole al major worker, Fig. 22. Head of minor worker. lig. 23. Mesmama and peliok of minor morker.

Fig. 24. Distribution of C' goukfomas material examined during this sudy.

ELO): 11 mi . E Kimba (PJM); 12km E Cedana (RFO); I2km E Warramboo. Eyre Pen. (PIM): 13 km E. Ooldea (IAF): 13 mi . SE Straky Bay (TGR): 15km NW Renmark (SOS): 18 km E Ceduna (RFO): 20 hm E Ceduna (IAF): 20 km E Pancy HS, Gawler Ranges (PIM); 20kim E Ulooloo (PJM); 20km ENE; Umberatana (PJM); 20km NW Minmipa (NJM): 23 km NbyW Renmark (SOS): 32 km N Renmark (SOS): 3mi. W Penong (TGR); 41 km EbyN Nullarbor (RWT): 45km WNW Emu. Victoria Desert (PJNI): 4km W Wirnla (IAF): 4mi. E Oraparinna ($\mathrm{CFF}(\mathrm{i}) ; 53 \mathrm{~km}$ I; Vokes Hill, Victoria Desert (JJMI); 53 km NbyW Renmark (SOS); 58 km E Vokes Hill, Victotia Desen (PJM): 5 km N Poochcra (RWT \& RJB \& ELO); 60 km N Colona (EXP): 60 km NNF Ceduna (JAF \& PJM): 6 km W Nundroo (RFO): 7.4hm SW Poochera on Port Kenny Rd (RWT \& RJB \& ELO); 7.5 km NW Venus Bay (SANPNS): 79 km NNW Remmark (AJM): 7kn NE Pamong (SAN[PS): 7 km SE Belah (SANPSOPS): 7 km SSIV Munyaroo (PP (WKH); 7kni W Inila Rock Waters (SANPYS): 9km N Atkindale HS (SANPSOPS): Aldingal Scrub (SMIO); Allendale HS 9 km N (SANPSOPS); Barata 6 km NW (SANPSOPS): Belah 7 km SE (SANPSOPS); Blyth (BBL) Brookficld Conservation Park, 0.5 km S Camparea (SOS): Brooktield Conservation Park, Comp area (SOS): Buckleboo (EBR); Calpatama CP, Eyre Pen. (JAt'): Calpatanna Waterhole (IAF): Calperun Amalia ($\triangle \mathrm{JM}$): Calperum Murphys (A.IM): Calperum NE comer (A.JM); Cambrai (JJN): (anopus Dan (AJM): Canopus HS, Dangeali CP (IWE \& KRP): Ceduna (KCA); Ceduna 10 km NW (RFO): Ceduna 18 km Ł゚ (RFO): Chadee (L.QU): Chowilla (TGW \& PJM) Clements Gap CP (DHI): Colona 60 km N (EXP); Cooltong (CiLI): Coultong
(AIA \& MAA) C'owell (BRH): Dangeali Tippetary Dam (A, M M): Dangeali, NE comer (A.IM) F Flash Jack Dion (SANPSOPS): (Bawler Ra lake Everard Sm (GFG): Gawler Ra Serubby Peak (JAF): Gawter Ramges (DJM): IIdeaway Hut (SANDSOPS): Inila Keck Walers 7 km W (SANPYS); Gatarapko Creck (AJM), Kimbs (PAI): Kokatha Gawler Ranges (PIM): Kaoma Tyre Peninsula (PJM): Koonsmote (PIM): Koonamore HS (JAE): Kychering Soak ($\mathrm{RC} C^{\prime}$): Lake Everard Sm, Gulwer Rantes (GFG); Lake Gilles (JAFY: Lock ZADME, Loxton Paynes Farm (AJM); Loxton Snodgrass Farm (AJM): Mambray Creek. Pon Augusta (PIM) F Middle Dim (SANISOPS); Middletsack Stin (AJO); Mimipa 20 km NW (AJM); Mitolerie Bockbole (SANPS): Mompolatia (SANPSOI'S): Moorowie Plain (PJM): Morganvale. Dangeati CP (A.MM), Mount Aroona (SANPNWFRS): Moum! IVe (AIA \& PIF); Molbyt Resene CP (1/NF; Mandoota NT (P: M) Muoyaroco CL 7 km SSW (W.K. llead); N S.W. Coombah (PSW) Nundruo (AJA \& SRA); Nundroo 6 km W (RFO) : Nundroo Roadbouse (RlCo): Oah Bore (CiC'M); Ooldea (AMI-\&; Dohded 13 km E (JAF); Orapariona 4 mi F (GFG); Gaparinna: Flodels Ranges (P,M): Orroroo (GIG); Pandappa (SANPSOPS): Paringa iSANPVS): Poochera (BIIO); Poochera (GFG), Poncheta (RW! \& RJB \& P1 O): Poochera (AJM): Ponchera area (RWJI: Pooclicra area (RWT \& PSW): Poochera Cemetery (AJM \& CIIW) Poochera Hotel (SOS): Poochem. "Freightime site" Jusi S of village (RWT \& RJB) : Prominook FFat (Gill1); Pot Kanny (SANPVS); Purnong 7 ku NE (SANPVS); Rockwater Rocktobe (SANI2VS), Sall Lake (PHILI): Scrubby Peokz Galwer Ranges (JAF \& WKH): Stockyard Plain (ciLLi): Streaky Bay (BBL): Streaky Bay (JWh): Sreaky Bay (PGR); Thity Thousand Tand (GCM): Tinda Catch (SANPSOPS). Tipperary Darm. Dargegali (P (ANM): Venus Bay (SEG): Waikeric (BBL) Wedima Well. C'alpatanna CP Eyre Pon. (JND): Wectubtre (PAI); Whyalla (PJM \& RBH); Windsor (HBW): Wmsoone Hill (SANPSOPS): Wirmula 4 km W IJAE): Witrula (KCA): Valala (SANPNS); Yantince (CAA): Yelpawaralinna Creek (JAF \& 131II): Vookamurra (WHC : Ymbarta ('P (SAH); Yumbarra dog fence (JAF): Yumbarra Rockhole (SANPYS). Victoria: 3.3 km N Millewa South Bore (ALY): Hutah 6. 3 km N (ALY); Lake Hutah (JDt); Mildura (JCM!): Millews south Bore 3.3 km N (ALY): Sea Lake (JCGi), Westert Austratia: 1025kyi N Jonsma Rock, on Balladonia Rd (RWT): 10kst NE Peak Charles Peak Gharles Naft The (SOS); rokm S Balladonia (SOS) 10 mi S S Karonic (RWT); I km SE Mt Ragred. Cupe Arid Natl Dk (Sos): 100 km ENE Fsperance (DSW) ; 23 km ISEi of Cochlebiddy (RWT): 27 mi . W Fraser Rge, Ils (RW'Ts: 25 mi , NbyW Balladonia HS (RWT): 3 (mmi,

SI by I: Zanthus (RWT): 3knt SW ML Raged. Gape Aid Natl Ple (SOS); 55 km S Balladonia (SOS); 60 mi E Balladonia Stn. (TGR) औkm S' Norsemun (JEF): Balladontia 80 kin 1: (A.IM \& SBA); Border Village (KMA); (ape Arid National Payk (AJM \& SBA): Gape Atid NP (RPF); Eisperance (BBI.); Fucla (SOS): Gora pas Gooma| Hill (TGR): Jarrahsend A.IM \& WMA) Jomanat Roek, 9kni NW ML. Kagged (RWT): Kambaldea 3.30 S II5.41F (1DM): Madura (AJM): Maduca (IFB \& MSU); M1, Racoed (BBL). Mundrabilla Motet (AJM \& SBA) Wecbubbie (PAI): Worsley (IDM).

Whater didenoys

Erect hars present on Libiae and scapes. Melanoial groove ahsent in minar workers. Propodeum with more than 40 erect shor and long setac. Pubeseence on head and gaster abundant, with inderidual hairs overlapping. In profile, dorsum of pelialar node rouncted in minor workers, a blunt angle in major workets. The relatively elongate body svish abundant erect hais will separate this species from close relatives.

Description (major wowkey)

Abterior clypeal tharem whit a neatly siraigh! but erenulate medial projection with angulat empers (Fig, 20). Pronotum weakly convex: posterior mesonotum, metanotum and dossum of proporleum Mat and longs propodeal angie monded, dectivity straight, ratio dorsum to dectivity about 2 (Fig. 21). Anteriof face of petiolar bude eonvex, summit blunl, pasterior lace mostly convex (1 ig - 27). Txeept for Funieulus, entire body covered widl plentiful ereet solac. I lead red to darh beown, seape dark brown ta black, fumiculus dark browa. pronotum red-hrown. propodeum red-browni gaster black: Jegs lighter than mesosema.

Deseviphon (mianor wivekers)

Anterior clypeal marein toebly convex. strongly proyecting, crenulale, anlerior corners with wide angles; medial canina blum (Dig. 22). Pmontum feebly convex, mesonotum and dorsum of prepodemm flat and long sometimes leebly coucave angle rounded. pusterior face straight. ratio of dorsam 10 declivity ahoun 3 (Fig, 23), Anterior face of petiolar node convex, summit bluntly rounded. posterior fice conivex (fig, 23). Except for funiculas. enlice body covered with plemhtinl erect selace. Head red to dark browys, scape dark brown to black. fimiculus dark brown mesosoma mode. and gastel darker: legs lightet Usom mesosunts.

Nequmamous

Whathes (0 -20), (1 0.86 (mimion) - 1.11 (major), HIL $1.83 \mathrm{~mm}-4.24 \mathrm{~mm} ; 11 \mathrm{~W} 1.54 \mathrm{~mm} 4.71 \mathrm{mmo}$ ML
$2.87 \mathrm{~mm}-4.91 \mathrm{~mm}$; MTL $2.22 \mathrm{~mm}-3.04 \mathrm{~mm}$; PnW $1.18 \mathrm{~mm}-2.66 \mathrm{~mm}$; SI 0.65 (major) -1.60 (minor); SL $2.46 \mathrm{~mm}-3.08 \mathrm{~mm}$.

Remarks

This is one of the most commonly encountered spectes in this group. It oceurs fiom western New South Wales and Victoria west to south-central Western Ausiralia and can be found in a range of habitats including mallee on a mumber of soil types. In sandy soils nest entrances are at ground level gencrally close to the trunks of mallee or other tall vegetation. In heavier soils nest entrances are constructed of soil Formed info a column about 30 mm diameter and 100 mm tall with an entrance hole in the side near the romeded summit. The purpuse of ${ }^{-1}$ this turret is not known but is likely to be related 10 predator avoidance and/or to prevent water entering the nest during looding. A muptial flight was observed at Waikeric. South Australia on 15 May 1998 at 3 pm when the temperature was $25^{\circ} \mathrm{C}$. This ant is known to be the host for an unusual group of lathoppers. members of the Eurymelidae (Hemipera). These leafhoppers live in the ants' nests and rorage nocturnally along with the ants (Day \& Pullen 1999).

Camponotus owensaesp. nov.
(FIGS 25-27)

Material examined

Holorope. Minor worker from 32 km NNE Inila Rock Waters, Yumbarra Conservation Park, 31° 4.4' () " " $\$ 133^{\circ} 26^{\circ} 59^{\prime \prime}$ F., South Australia, 20-24 March. 1995. 11. Owens (SAMA).

Paraybers. Three monor workers. same data as holotype (I in SAMA. 2 in ANIC).

Horker diagnosis

Tibias with abundant suberect hairs. In minors, metanotal groove depressed below the level of the anterior region of the propodeum; dorsal surface of petiolar node relatively long and hat. its interior face much shorter than the posterior lace. Elongate (overlapping) and dense pmbescence present on head, mesosoma, gaster and tihiae. Body colour back. The conliguration of the metanotal groove and the abundant pilosity will separate this species from others in this species group.

Descoption (minom worker)

Anterior clypeal margin projecting, median portion nearly straight and feebly crenulate with rounded angles laterally (Fig. 25). Pronotum. mesontotum, metanotum and the anterior one-filth of

Figs 25-26. C. owerker workers. Fig. 2s Ikad of minor Horker. 1ig. 26. Mesosomas and petiole alt minor worker.

Fig. 27. Distribution al ${ }^{\circ}$: anensae material examined during this study.
propodeum a strong. even domed convexity distorted only by the iwo feeble, well separated sutures of the metanotum, the posterior four-fifths of propodeum rise from a wide concavity to a posterior hump which imeludes the rounded angle and the mostly straight posterior propodeal lace (Fig. 26). Anterior face of petiolar node straght, shorter than posterior lace, summit narrowing upwards to a rounded angle (Fig. 26). Entire body black and covered with plentiful erect and that lying white setae except antennae where setae are liat lying to suberect.

Weanaremembs

Minur worker $(\mathrm{n}=2)$. $\mathrm{Cl} 0.80-0.83: \mathrm{HL} 2.04 \mathrm{~mm}$
$2.35 \mathrm{~mm}:$ HW 1.63 mm 1.95 mm ; ML 3.33 mm
3.89 mm : MTL $2.98 \mathrm{~mm}-3.08 \mathrm{~mm}$; PnW $1.42 \mathrm{~mm}-$ $1.60 \mathrm{~mm}:$ Sl $1.50-1.71 ;$ SL. $2.79 \mathrm{~mm}-2.92 \mathrm{mmn}$.

Eirmolugy

Named atler Helen Owens of the South Australian Department of Environment. Heritage and Aberiginal Affairs, who found this species during a faumal survey.

Remarks

This rare species has been collected only ance from south-western South Australia (Fig. 27). Specimens were collected in pitfall traps in mallee. Nothing else is known of its biology.

Cumponomens postcomumes Clark
(FIGS 28-32)
(cintmanns (Tankemsmex) postcornums C"lark. 193(1): 121.

Mareriol exanimal

Swhepes. 10 workers from Bungulta and lanmin. Wentern Australia (1 in AMSA, 5 in MCZC, 4 in IVMA).

Ohter material examined

South Australia: Blythe (BBL). Western Anstralia: 26mi. NWby Worseman (RWT); 32km W satmon Gums (G1'B): 35 km S Kambalda ($1 \mathrm{AF}^{2}$): 38.8hm ex Murchism R-Billabong (DHK \& ACK \& WIN \& RDN): 53 mi SSW Coolgardic (RWT): 71 km S Payne's Find (GPB): 9mi SW Grass Patch (RWT); Binneringie Road, 6 km ESE Widgiemooltha (JAF); Bungulla (TGR); Frenchman Bay. S Abany (LPK): Kalbarri Nall Pk (BBL): Mullewio (W'MW): Norseman Area (AMD \& MJD): Parker Ra. [as Parkers] (TGR); Salmon Gums. 70mi. N Esperanec (BB31): Tammin (TGR): Tardun (CIM).

Fige 2M-31. C. mavicormmas workers. Fiy. IX. Head of majur worker. Fig 29. Mensamaa and petiole of major worker. Fig. 30. Head of minor worker. Fie. 31 Mesmontatand petioke of minne worket:

Fig. 32. Distibulion of C: porkormins material examined durine this study,

Worker diagmosis

In minor workers, the pronotom, mesonotum and dorsum of propodeum form a strong, even convexity. the metanotal groove is absent and the posterior face of the propodeum is only weakly differentiated lrom the dorsal face. The postorior comers of the head in major workers taper rearward into blunt protuberances. The shape of the mesosoma and the cephatic protuberances in major workers will separate this species from close relatives.

Dexcription (major werker)

Medial section of anterior clypeal margin weakly projecting anteriorly with broad fateral angles and it lechle medial coneaviry: carina distmet (Fig. 28). Posterior comers of head produced as blumt homs in major and mediuni workers (Figs 28, 29). Pronotum, mesonolum and metanotum form au even convexity, propodeal dorsum and posterior face form a separate even ennvexity without angle (Fig. 29). Anterion lice of petiolar mode convex, summit moderately sharp. posterior tace straight (Fig. 29). Dorsal and undersides of head, mesosona, petiote, gaster and coxa with sparse reddish, long erect setae. Fintire body dark red-brown with the gaster darkes:

Dexeripilun (minus worker)

Anterior clypeal margin projecting weakly, carina sharp (Fig. 30). Pronotum, mesonotum and dorsum of propodeum form a reasonably even convexity: propodeal angle broadly rounded, posterior lace stratght. ratior of dorsum to declivity ahoul 2 (Fig. 31). Anterior face of petiolar node convex, summit hiluntly rounded, postcrior face convex (17g. 31). Dorsal and undersides of head, mesosoma, petiole, gaster and coxa with sparse reddish long erect setac: Entie body dark red-brown with the gaster darker

Measurements

Workes $(n=8)$ C $1.06-1.18$: HLL $1.95 \mathrm{~mm}-$ 4.16 mm : HW $2.06 \mathrm{~mm}-4.89 \mathrm{~mm}:$ ML 3.28 mm
$4.90 \mathrm{~mm} ;$ MTL $2.16 \mathrm{~mm}-2.84 \mathrm{~mm}$: PnW $1.71 \mathrm{~mm}-$ 3.13 mm ; $\mathrm{S} 10.57-1.14$: SL $2.35 \mathrm{~mm}-2.77 \mathrm{mm7}$,

Remarks

This species is ground nesting with a simple entrance hole, II is most common in south-westem Western Australia with a single collection Irons South Australia which is lighter in colour than those from Western Australia. Material is mostly from relatively dry aroas such as mallee.

Camponotus prosseri sp. nov.

(FIGS 15, 33-37)

Material exumined

Tholutoze Minor worker Irom Streaky Baty, South Australia, 30 August 1974, B. B. Lowery, mallee, in sund (ANIC).

Pafotyres. 25 workers. 10 quecns and I male, same data as liolotype (2 workers and 1 male in $\mathrm{SAMA}_{\text {, }}$ remainder in ANIC.

Qiher materiall exammed

New South Wales: Imi. S Hillston (BBL) 4 mi . N Condobolin (BBL): $62.8 k m \mathrm{~N}$ Coonabarabiain (LPK): 7mi, S Hillston (BBL); Berrigan SF (BB1.) : Pooncaric (RHC \& YCC \& NKN) South Australia: 20 km E Llooleo (3 JM): 32 km N Remmark (KRP): 7kme SE Balah (SANPSOPS); Aldinga (BBL); Innes Natl. Pk., York Peninsula (PJM): Innes Nal. Pk., York Peninsula (PJM): Koonamore (PIM): Loxton Payne's Fam (AMA); Loxton Snodgrass (AMA): Marion Bay. Vorke Pen. (RSI); Poochera (PSW); Poochera (RWT \& RJB): Pori Lincoln, Zkm N Cape Toumefor (P.IM) Port Lincoln, Eyre Pen., F Horse Rock (PJM); Port Lincoln. Horse Rock (PJM); Porl Liocoln. Spatding Cove (PJM): Porl Partant, 50 ml . A Adelaide (BBI); Streaky Bay (BBL); Suraky Bay (BBL) : Vumbarra ('P, Gkm NNE Inila Kock Waters (HOW). Western Australia: $28 k m$ WSW Israelite Bay. Cape Arid Nat Pk (SOS): $30 \mathrm{km1}$ W Israelite Bay (GPB \& GJM) : 53 mi SSW Coolgardic (RWT): 53 mi . SSW Coolgardie (RWT): 62 km NE Albany, llassell Nall Pk (NOS); 72 km SW Norseman (SOS): 80km. West Talbot Rd. Beverley (AMD \& MJD): Albany (LCiR); Balladonia and Madora (BBL): Eucla (SOS); Gora [as Goora) Rock (TGR); Kings lark (BBL); Mt Ragged, Cape Arid NP (AHB); Norseman (BBL): Salmon Gums (BBL), Stirling R3. (GFR); Stirtinge Ra. $N P$ (CIPB).

Fige 33-36. C. prosisery workers. Fig. 33. Head of major Worker Fi!e. 34. Mesosoma and periole of major worker. lig. 35. Ilead ot minor worker. Fig. 36. Mesosoma and petiole of minor werker.

Fig. 37. Distribution of (ci mosseri material examined during this sludy.

Wonker sliagnosis

Anterior clypeal margin in major workers broadly comvex across its entire width (Fig. 33). Seapes relatively long (in minor workers, $\mathrm{SI}>1.4$) (Fig. 15). Tibiae lacking erect hairs, propodeum with more than 10 erect hairs which are scattered along the entire dorsal surface. Posterior section of mesonotum weakly but distinctly convex immediately anterior of the metanotal groove (more so in minors, less so in majors): metanotal groove a shallow. Weakly defined concavity in minors (Figs 34, 36). Petiolar node angular or broadly rounded above, the anterior face al most moly slightly shorter than the postorior lace (Figs 34, 36). Head same colour as mesonotum (both either red or black).
This species is morphologically similar to C. eceriscipes and is easily confused with it. The difference is outlined under C. ceriseipes above.

Descriptions (majos 1serker)

Anterior clypeal margin weakly convex. scarcely projecting, with a weak carina (Fig. 33). Pronotum and mesonotum gently convex, metanotum distine dorsal propodeal face weakly convex. sometimes a lifte stronger near metanotum: angle well romnded (Fig. 34). Anterior Face ol petiolar node straight, summit rounded, posterior face straight, olten feebly concave near summit in dorsall view (Hig. 34). Posterior margin and underside of head, mesosoma, petiole and gaster with seattered long setae, tibiae and scapes lacking erect setae. Head red to black, scape red to black. funiculus dark brown: pronotum red to dark brown; mesonotum red to dark brown: petiole red to black; gaster very dark brown to black: legs red to black.

Deseription (minter Howker)

Anterine clypeal margin conver. carina distinct (Fig. 35). Pronotum and mesonotum an even, wide comvexity, thetanolum indistinct propodeal dorsum Febbly concave anteriofly, straight posteriorly, angle widely rounded. ratio of dorsum to dectivity near ? (Fig. 36). Anterior lace of petiolar node short. Mat, inclinod forward, summin roundod, abou! as high as long, posterior face short, flat (Fig. 36). Posterior maryin and underside of head. mesosomes. petiole and gaster with seatered long setac, thbiae and scapes lacking erect bairs. Head and mesosomat clothed in line flat-lying pabescence sufficiently dense in places to thide the integument. Head red io Hack. seape red to hack, funicults dark hriwn, pronotum, mesonotum, propodetom and petiole each red to black; gaster very dark brown to black; legs red to black.

Measuremsents

Wiowtes ($n=0.4$) C'I 0.72 (minor) - 1.21 (major)
 $2.4 \mathrm{~mm}-4.13 \mathrm{~mm}:$ MTL $2.14 \mathrm{~mm}-2.66 \mathrm{~mm}: \mathrm{Pr} W$ $0.98 \mathrm{~mm}-2.42 \mathrm{~nm}: \$ 10.70$ (major) - 1.76 (minor). SL. 1 goimon- 2.71 mm .

Itronulages

Named after 1 Or lan Presser. Cunturrat, Australia.

Remarlis

The specimens considered here as belonging to thes spectes show consistency in averall head. mesosomal and petiolar shape ats well as overall size. The length of the scape varies but this variation is Thighly comtated witt head widh ifig. 15 as would he expected for a single taxion. However, These specimens do show considerable variation in colour and to a lesset extent pilosity. Allawing for a lew apparemly callow or faded individuals, all speciments bave the head und gaster black. The mesnsoma, petioleand legs, hovever, wary from black to yellowred, These colours show considerable variation in intensily with essenfially all shades between the extremes present. In generul most nest series are lairly eonsistent in colour patiern with the exception of the petiole and legs, which can vary among individuals However, the valriation between series shows a more interesting patem. The pronotum is gencrally black but is partially to completely ted in a lew collections from Western Australia, the mesosoma and propodeum vary from black in read but this variation occurs throughoue the range of the speces and the lighter colout is much more common. especially for the propodeum where red is more common than black. It should be noted that the dexelopment of the red colour follows a distinct
paltern. The propodeum must he red for the mesonotum to be red, and the mesouctum must be red for the pronotum to be red This means thay the most common colour pattern is black with a red propodeum followed by hack promotum with red mesonotum and propodeum and finally individuals with a completely red mesosoma. The colours of the petiole und legs vary independently of the mesosomia.

The variation in pilosity is substantial but generally less obvious than that thund in body colour. Both the erect hairs and appressed pubsesence vary from sparse to abundant on all major body regions. And as with colours most variation oevers hetween nest saries rather than within west series: However, no significant geographic pattorn was detcoted regarding the development of pilosity, and there was no obvionis comelation helween cotour palterms and pilosity. The only exception to this is a set of specinens from snuth-western Western Auseralia which had abundant long erect setae. In spite of this one groip, it proved difficult in segregate the available material imbo subsets for which diagnoses could be developed. There were distinct sets of individuals which shared colour or pilosity patterns but there remained a number of specinens which were either intermedate belween these sets or which could not the placed confortably within these sets. Asa result, all althese specimens are here treated as holonging to a single, wide-ranging tevon which shows considetrable variation in a mumber of characters, with a pore that some of these may wefl represent distince species which are nor diagnosable with the materiat currently available.
Biologically. these amts have been foumd in mallee. Callimis woodlands and conslal scrub. They are known to hest undet stones as well as in open soil withent covering. especially in sand. and they have been taken in pitfall traps Ihcy are known to forage on low vegetation including mallee and yellow box.

Camponotus rufonigrus s. s , nov,
 (FiGS 38-49)

Morerial eramined

Holowne Minor worker from Cambrai South Auscalia, 4-7 Cebruary 1972, P, I. M. Greenslade: dure lit. (ANIC):

Purbopzes. 8 workers, same data as hotolype exeept 1 collegted 21-25 Febrary. 1972 , dune 101.2 eollected 7-10 Febrbary. 1972, dune 1:I; 1 entleeted 25-24 Febriary, 1472 , dune $1 \mathrm{~h} ; 2$ collected 25 January, 1472, dune 2 sollected (8-2) Febriary. 1472, dune 14 (ANIC).

Figs 3x-39. (. memigens wokers. Fyg. 38. Head af minur worker, Fige 39. Mesoson:i and pelale al minar worker.

40

I ig. Al. Bistribulion of ('. rufinigras materal examined durine Ibis study.

Other makeral examined

South Australia: Gawler Ra. (P. MM): Yumberra CP. 23.5 km NW loila Roch Waters (HOW).

Worker idiagmesas

Anterior clypeal mangin broadly convex across its contive widh (fig. 38). Tiblate and sapes lacking ereet hairs; propudedum with more than 10 erect hairs

Which are seattered along the entire dersal surface. Petiolar node angular or broadly rounded above, the anterion face at most moly slighty shorter than the posterior face (Fig. 39). Black had eontrasting with red mesonolum.

Descriprion (minor worker)

Anterior clypeal margin evenly convex carima strong (Fig. 38). Pronotum and mesonotum forming an even convexity. metunotum indistinet. propordeal dorsum concave anteriorly and tlat posteriorly, angle rounded, declivity straight, ratio of dorsum to deelivity about 1.5 (Fig. 39). Anterior face of petiolar node flat, short, summit widely rounded. posterior face conves (Fig. 39). Dorsal and under surfaces of head, mesosoma, petiole, gaster and coxa with sparse long crect setie. Entire body clothed in fine short indistinct flat lying pubescence. Hend, anterior of mesosoma. most of node and gaster dark hrown to black, otherwise redbrown.

Weasurememos

Minor worker ($1=3$). Cl $0.85-0.86 ; 111,1.37 \mathrm{~mm}$
1.60 mm ; HW $1.16 \mathrm{~mm}-1.38 \mathrm{~mm}$: ML 2.19 mm -
2.59 mm ; NTL 1.53 nm - 1.96 mm ; PnW 0.98 mm 1.20 mm ; S1 $1.44-1.55$: SL $1.75 \mathrm{~mm}-2.14 \mathrm{~mm}$.

Enturology

Named alier its red and blach body colour.

Remarks

This species is known from three locilithes in southem South Australia (Fig. 40). Fwo collections consists of single minor workers, while one (from ('ambrai) contains nine minor workers collected at six different times during danuary and Febroary. 1972. Thus this species has been rarely collected and then generally in small numbers. The limited biologicat information suggests that this species necur's on sand.

Camponotus vetasus sp. nuv.
$(\mathrm{FlGS}+1-43)$

Marcrial examimed

Hololype. Minorworker from Manning River Corge, $16^{\circ} 39^{\prime} \mathrm{S} 125^{\circ} 55^{\circ} \mathrm{F}$. Western Australia. 1 June 1992. S. O. Shatluek (\triangle NIC).

Parcolyes. 21 minor worliers, same diata as hololype (3 in SMMA, is in ANIC).

Olher mutariul exrmined

Western Australia: 1.5 km W King Edward River crossing (SOS).

 worker. lig. I2. Mesosoma and petiole of minor worker.

1.1g. 43. Distribution of © setosas material examined during this study.

Worker diagumsis

Ereet haids present on tibiac. Meranotal groove a distinct, shallow trough. "hese Iwo characters will separale this distinctive species from others in this group.

Description (minor worker)
Pronotum and mesonotum form together an even. raised convexity followed by the angular trough of the metanotum. the weakly convex dorsal surface of the propodeum. a widely rounded angle and the straight posterior face (Fig. 42). Entire body covered with dense flat lying pubsscence, crect setac absent from antennae. Pubescence on posterior of gaster yellow. elscwhere white. Ciester black, most of head. mesosoma and node black, the remainder with red patches: antemna dark brown: coxa and femora red. thine and tarsi brown.

Mersumemernis

Workers ($11=4$). C1 $0.85-0.88 ;$ HL. 1.88 mm
1.96 mm ; HW $1.64 \mathrm{~mm}-1.69 \mathrm{~mm}$; ML 3.08 mm $3.20 \mathrm{~mm}:$ MTL $2.34 \mathrm{~mm}-2.54 \mathrm{~mm}: 1^{3} \mathrm{nW} 1.50 \mathrm{~mm}$ 1.54mm: SI 1.45 - 1.57 : SL 2.45 mm - 2.62 mmm .

Etrunloge.

Named after the abundant long setae present on most regions of its booly.

Remarks

This apparenty uncommon species is restuicted to the kimberley region of Westem Ausiralia (Fig. 43). All known collections consist of ground-forging Workers in open Einculyphens woodlands.

Cantronomis retchras.s (Lowne)

(FTGS 44-48)
Formica festaceipes Smith, 1858: 39 (preocenpied by Leach. 1825: 290).

C'amponoms rewtucizes-Mayr+ 1862: 062.
Formica terchrams Lowne, 1865: 278 (lirst available replacement name lor Formiou hertereviper Simith) - Mayr, 1876: 65.
 vic\%oriensi. Santschi. 1928: 479-McArthur el al. 1998: 587.
(emmponotms (Tancempmex) moroports Clark 1938:379 - McAithur et al., 1998:587.

Material eremined

Formico cestaceipes: Syntype workers from King George Sound. Western Australia (BMNH - see McArthur et al. (1998)).
Fommica terehrons: Syntype workers and queens from Sydney. New South Walces (sec MeArthor er al. (1998)).

Componotus (Mremomurba) latrmmenhes. victorichsis: Syntype workers and males from Elstemwick and Belgrave, Vietoria (see MeArhur of (f). (1998)).

Componotm (Tanucmirumex) muoporms: Syntyps

46

Figs 44-47. C: eserbrams workers. Fig. 44. Heal of majur worker. Pig. 45. Mesosoma and peliote of major worker. Fige th. Head of minor worker. Fig. 47. Mesusoma and petioke al minor worker

Fig. 48 Distribution of ce arehraus material examined during this sludy. For addiliomal material see McActhur el al. (1998)
workers from Reevesby Istand, South Australia (3 in MVMA. 6 in ANIC - sec MeArthur et al. (1998)).

Other matcrial examined

See MeArthur at al (1998)

Horker diagnosis

Erect dairs present on seapes and tibiae. Metanotil groove weakly developed and essentiatly absent (Figs 45, 47). Propodem with 10 to 25 eree hairs. Pubescence on head and gaster sparse, with individual hairs generally non-overlapping or at most only slightly overlapping. In profile, dorsum of petiolar node angular in both minor and major workers (Fig. 45. 47). These characters will separate this taxon from close relatives. especially the morphologically similar C^{C} gouldiomms.

Description (major watker)

Medial section of anterior clypeal margin straight. projecting anteriorly with rectangolar lateral eomers. cremulate, carina indistinel (lig. 44). Pronotum and mesonotum weakly convex: metanotum distinct as two parallel, transverse grooses, dorsal surlace of propodeun straight, angle well rounded. posterior face mostly straight, length of dorsal and declining faces about equal (Fig. 45). Anterior lace of petiodar node convex, summit sharp, posterior face mostly straight (Fig. 45). Entire body with plentifil long erect setac tending to suberect on tibiae and scape, absent from funiculi. Head red-brown to black. funiculi lighter, mesosoma and node yellow to brown, gaster darker than mesosoma. legs lighter.

Description (minor ntrorker)

Anterior elypal margin with median section
convex and strongly projecting. carina distinct (Fig. (6). Pronotum and mesonotum mostly weakly convex: the smallest workers withou a metanotal groove: dorsal propodeal strface straight, angle well rounded, posterior face straight, ratio dorsum to declivity exceeds 2 in smatlest workers (Fig. 47). Anterior and posterior faces of petiolar node gencratly parallel, summit bluntly convex (Fig. 47). Entire body with plentiful long and short erect setile tending to suberect on tibiae and scape, absent from funiculi. Head brown, finiculi lighter. mesosoma and node yellow to brown. gaster darker than mesosoma, limbs lighter.

Mcenarmernas

Horkers ($\mathrm{n}=20$). Cl 0.85 (minors) 1.11 (mạiors): HL $1.36 \mathrm{~mm}-3.28 \mathrm{~mm}$: HW $1.15 \mathrm{~mm}-3.64 \mathrm{mmm}$; ML $2.07 \mathrm{~mm}-3.64 \mathrm{~mm} ;$ MTL $1.56 \mathrm{~mm}-2.39 \mathrm{~mm}:$ PrW $0.91 \mathrm{~mm}-2.02 \mathrm{~mm} ; \mathrm{SI} 0.66$ (majors) - 1.54 (minors): $\mathrm{SL} 1.77 \mathrm{~mm}-2.39 \mathrm{~mm}$.

Remarks

Cemmponous lerchruns is common in sandy soil or disturbed sites across mueh of southem Australia (Fis. 48). Nests are sometimes located adjacent to the trunks of trees or shrubs with abundant excavated soil deposited around the mmerous entrances. In some cases excavations have been observed to apparently damage or kill nearby shrubs. In other cases nests and their entranees are in open areas and lack mounds. Colonies may be very large and sometimes have "highways" Icading to trees and other colonies. This species is often found in association with Ogwis spp. hutterflies (Braby 2000). For additional details see MeArohur et (1). (1998).

Camponoms versicolon Clark
(FIGS 49-54)
Componotus (Mymosazhes) verstodor Clark, 1930h: 122.

Matrerial extmined
Symopes, Workers from Enu Rocks, east of Ongerup. Western Anstralia (6 in ANIC, 3 in MCZC, 3 in WAMP, 5 in MVMA, 3 in BMNH).

Offer matherial cxamined

Western Australia: 33mi. SbyE Karonic (RWT); 9mi. E Newdegate (TGR): Bungulla (TGR): Emu Rock (HRE); Newdegate (HMC \& TGR): Norseman (BBL).

Horker diagnosis

Tibite and scapes lacking erect hairs. In minor workers, metanotal groove angular to slightly

49

51

Figs 49-53. C. Merskoler warkers. Fig. 79. Head of ntajor worker. Fig. 54. Mestosomal and petiole of major worker Fig. 51. Head ol minor worker Figs 52-53, Mesosoma athd periok of minor worker.

Fie 54. Disimbuion of C aersirolor material exanmed duringe lifes study.
depressed below the amerior region of the propodeum (Figs 52, 53); dorsal surface of petiolar node in minors relatively long and flat to weakly convex, its anterior face much shorter than the posterior face (Figs 52, 53). Mesosoma black and with at least the lirst two gastral tergites red and distinetly lighter in colour than the propodetm. gasiral tergites never wilt golden-yellow bands. The configuration of the metanotal groove combined with the distinctively colouted gaster will separate this species from close relatives.

Description (major nowken)

Dorsal surfaces of pronotum and mesonotum convex and separated by a shallow angle, propodeam uniformly convex without a distinct angle: petiolar node with paraltel anlerior and posterior faces, its upper surface slightly elongnted Mat th weakly convex (Eig. 50). Ereet hairs sparse on outline of head including underside, seatered on mesusoma, petiole, coxa and gaster, absent from libiae and scapes. Anterior clypeal margin weakly convex (Fig. 49), Body red-black, head and periole slightly lighter than mesosomat, gatier with the lirst two tergites red the renainder red-black.

Descripton (minor worker)

Anterior clypeal margio convex (Fig. 51). Dorsal suffaces of pronotum and mesonotum convex and separated by a shallow, broad angle; metanotat groove either a broad angle (Fig. 53) or a shallow wough (Fig. 52) dorsal and posterior laves of propodeum llat to weakly convex and separated by at most a gentle angle, Anterior face of petiolar node short and separated from the dorsal face hy a distinet angle. dorsal face clongate and flat to iwcakly convex and separated from the posterior face by a
broad rounded angle, posterior face that (tigs 52 , 53). Erect hairs abundant on outline and underside of head, mesosoma, petiole, eoxa and gaster: erect hairs absent from scapes and tibiae. Body dark redblack or black with the head sometimes slightly lighter. gaster with at least the first two tergies red and the remainder dark red-black, or sometimes entirely red.

Mecasmements

Workers ($\mathrm{n}-7$). CI 0.82 (minors) - 1.06 (majors): $11 \mathrm{~L} 2.23 \mathrm{~mm} 3.20 \mathrm{~mm} ; \mathrm{HW} 18.3 \mathrm{~mm} \quad 3.42 \mathrm{~mm} ; \mathrm{ML}$ $3.96 \mathrm{~mm}-4.86 \mathrm{~mm} ;$ MTL $2,72 \mathrm{mmi}-3.00 \mathrm{mm:} \mathrm{SJ}$ 1.45 (majors) - 1.60 (mingrs); SL 2.93 mm 4.95 mm .

Remarks

Cumponotus versicolor is an uneommon species which is limited to a narrow band acruss southern Western Australia (Fig, 54), It is most simitar to Ci: currocinctus and can be separaled from it by the darker body colour and red gastral letgites. Minor workers of Co anrocincous also have larger numbers of ereet hairs on the head and mesosoma compared to this species. Essentialty nothing is known concerning the bielogy of C. versicolur:

> Camponoms wiederkehri Forel
(FIGS 55-59)
Cannunmors wederketry Forel. 1894: 232.
Camponotny denticulanws Kirby, 1896: $204-$ Clark. 1930a: 19 (worker redescribed). New synonymy.
Campanoms (Movpoturha) temrumealus Whecker. 1915: 814. New synenyimy.
Camponanus widerkethi lucidion Forel, 1910:81 - Crawley. i915: 136 (queen description). New symonymy.

Malserial examined

Camponoms whederkelmt: Syntype workers from Charters Towers, Queensland (MHNG).
Componotus denticulatus: Syntype workers from MacDonell (as McDonell) Ranges, Northert Territory (2 in MCZC. 1 in MVMA).
Campanotus (Mvrmoturta) Iatrmaulus: Symlype workers from Lodmorden. South Australia (I iit SAMA).
Camponoths wioderkehri lucidion: Syntype workers and males from Tennant Creck, Northern Territory (3 workers in MCZC. 2 workets in MHNG).

Other muttorkat exammed

New South Wales: Waukeroo (RHIM), 10 mi. N

57

Tien 55-58. C. Hedertelne wakers. Fig. 55. Head al major worker. Fin. 56. Mesosoma and petiole of major worker. Fig. 57. Head of minor worker. Fig. 58. Mesosoma and peliole of miner worker.

Fig. 59. Distribution of 6 . Miderkehoi material examined during this study.

Broken Hill (RHM). Nurthern Territory: 1.5 km N Alice Springs (PJM \& RJW): 12 km SW Kaherine (PIM): 15 km S Tea Tree (MMA \& JHA); 20mJ. SIF Anthonys Lagoon (TGR): 25 km S Andado Stn Rodinga Ra (JへF \& DHJ); 35 km S Darwin (LIH); 37 hm E Wallara Ranch (SOS): 3km E Serpentine Gorge (SOS): 50 km WNW Hermannsburg (SOS): 7kn W Timber Creek (MAIA): Alice Springs (CBA): Alice Springs (WLB): Alice Springs (WCO); Alice Springs (LHI); Alice Springs (PPL); Nlice Springe (KRO); Batten Ck., 30km WSW Borroloola (JEF): Bing Bong HS (IFF); Bither Springs Creek (IAF \& DHII); Bullita Outstation (MMA): Camfield (TAR); Colyer Creek, \&km N Alice Springs (SOS): Corrobaree Rock, $2(\mathrm{~km}$ E Alice Springs (SOS): Darwin (SMO): Darwin (HWE); Doyles Ridge nu: Birdum (TGR); Flying Fox Creck (SMO): Glen Helen (SOS): Ielen"s Ck., Banku Banka Rd. (TGR): Illamurta Spring (JAF \& Dlll); Jasper Corge (IAR): Katherine (RVS); Kings Canyon Nat Pk. (SOS): Kings Creek Caravan Park (SDO): Kulgera (JBS): Kunoth Paddock, 30km NW Alice Sprongs (WAL): Kunoth Park inr. Alice Springs (PJM \& WLO): Macdonnel Downs (SAMA Exped.); MeArthur R. 48 km SWbyS Borroloola (IEF), Nanwictooma (AWH): NW Brunetre Downs (l'GR); Phillip's River (TGR); Port Darwin (WDD): Rimbija Is,, Wescel 1slands (EDE): Rimbija Is., Wessel Istands (TAW): Roderick Creck (J \wedge R); Ruby Gap Gorge (JへГ \& DIll): Temant Creck (JFF): Trephina Corge Nature Park (JBS): Trephina Gorge. 55km ENE Alice Springs (SOS): Turnalt into Omistom Gorge (SOS): Umbrawarra Ciorge (JAR \& IAR): Valley ol Winds, The Olgas (IEF \& TAW); Victoria River (BRII); Yubata. campground (SOS). Queenshand: 1.5 km WNW Riversleigh HS, ne. Gregory R. (JAF); 106 mi .

NW MI. Isa (TGR); 10mi. W M1. Garnet (BBL); thon). ESE: Cilber R. Crossong, E of Croydon (JED): ISme. ESE Emerald (ILDD): Imi \& Carpentatia Downs HS. SE Eimastcigh (JED): Imi. SE Larraine HS G.IID), 25 km \& Woadstock (PJM); 28mi, N Thorntonia HS, NE of Coneoweal (JED); 2mii. SE Camel 1k. IS. W of Iogham (JED); 2mi. SE Mary Katheen (JFD); 4mi. NE Oorindi (JED); 50mi. N Julia Creck (RELL), Sekm S Woodstock (PJM): 5 mi. W Lotus Vule 11S, N af Nommanton (JFD); 7km E Charers Towers (P)M): 9mi NE Canooweal (JED): Barcaldone (G) (i): Blackall (JBS): Carpentarid Downs (JED): Chaters Towers: Clemont (BBL): Cooktwons (BBLIO); Dalgorally, ns. Clomeurry K, (JED); Dommadgec Mission Station (PAI \& NBI): IJmerals (1 AC) : Emerald (1 HA); Emerald Distriet (SAH); Greenvale (JED): Greenvale Station area (SAII): Helenslee (TGR): Homestead (FHI): Fericho I'ACI: Marechn (BRL): Mornimgton Mission (PAT \& NBI), MI. Isa (JRU), in. Dmbulat (RWT \& JFF): Quipie (SSM): St. Beorge (BBL): Stat R. Crossmg (SAlD): Surbitan (FAC): Lownaville C'hariers Towers Rd. (LGR); Undilla LIS, NE of Camooweal (JE[A); Winton (FAC), South Austealia: 10kn W Mabel (k. (PIM): $11 \mathrm{~km} N$ Marymna Hill (SANPPITJ): 155 km N Cook (JAF): qokin ENE Pipailyatpara (SANPPITI); 26 mi S Kunytjan" (SANPPIT); 53km I Voties Hill. Victoria Desert (PJM). qoken S Pimba (MAA): 7mi. 15 Wiggena (TGR) : Bokme E Fmu Junelion. Victoria Desent (PIM), Alıdamoska (JAH); Arlunga (DCO); Aroum Dann (AJM \& IDE J Belah (SANPSOPS); Birthday Hill. N Tarcoola (PJM); Blood Ch. (CBA); Box Eseek (A.IM \& IIDE): 22 km N Beltata (JEF): Clinom Hills Outstation (JAF \& DHO): Coober Pedy (BBL). Copper Hill (HFR); Curdmorka, L. Dyme (BBL-f; Daverport Range (AJM \& MAA); Douglds Creck (MAA); Duthamintita (RCO): Ermubelta Mission (NBT); Emabella Mission Sm. (BTBL); Everard Park (JF1): Fariba (PJM); Gawler Ranges (DIM): Hideaway Hut (SANPSOPS): Lake Eyre (BBL): Lake Gaidner (AAS \& MIS); Mabet Ck (TGR): Mimilli (SANPPlT): Mitchell Nob (SANPPTTI): MI. Cooperina (SANPPIT, MIT. Finke (PJM \& JAF): Musgrive Ratuges (BBL); Ngarılyara (SANPPITI); Ooldea (AML); River Diamention ($\triangle \mathrm{MM}$): Roberstown (SANPSOPS); Konald Well (SANIPPLI) As and of L. Windaboun (BBL) , Sereceh OwI Etree (WMC): The Tiwins HS (RSM): Vokes lill (JAF); Vokes Itll (GFG); Vokes Hill. Vietoria Deseit (PIMt: Womikata Bote; Musgrate Ra, (SANPPITJ): Woocalla (RSM); Vardeo (\triangle JM \& एगT), Western Australia: 100 km E Southern Cross (PJM): L00kn SEbyE Broome (IVB), 11 km N Wiluna (DDA \& SRM); 163kmi SFhyE Rroome (118); 45mi. S Onslow (GCN): 50 km N Kalgootlic (P)Mo: 53mi SSW Coolgardie
(RWT); 70 hm E Kalgoorlie f JEF ; 7 km W Kunumura, Bandicool Ra. (DCE \& JBA), Asbhurton River (R)/M \& GCA): Baggo Mission (ARP): Balladonia (BBL): Black Stouc Range (KTR): Cancgrass, NNE Kalgoorlie (JED): Derby (WDD): Jigalong (HH); Kalgoorlic (PAl); Kalgootlic [as Kalgooliel (TGR); Kalumbaru Mission (MDN): Kimberley area ar: Kalumburu Mission ($<5 \mathrm{mi}$) (WLE): Kununursa boat ramp (RIIM \& (iCA): Lafrange Mission, 120 km S Broome IKMCr; Lyddon R., Carnaryon (RHM), Lyndon River. Carvarven (RHM): Meekuharra. Mt. Newman mid. Gascoyne R. (flM): Mitchell Pateau (mining camp) (DCF \& JBA); Morbl Bulla (NBT): Onslow (RHM); Oed R. (SAH): Figengoofa Minagg Centre (NBT); Pintar (CTM): Port George iv (JRB); Rocboume (WDD): Wiodjant Gonge NP (PSW).

Worker diomenosis

Anterior elypeal margin in major workers projecting. the centeal region straighs with rectangular sides juining the lateral regions ($\mathrm{F}_{\mathrm{i}} \mathrm{g}, 55$), Posterien section of meschotem that (or mearly so) immediately anterior of the metanotal groove, metanotal groove essentially absent or weakly developed in minurs (Fig. 5K) a broad shallow angle in majors (fig. St) Petiolar node afgulat or broadly rounded above, the anterior face at most only stightly shorter than the posterior tace (I igs 50 , 58). Tibioe and scapes lacking erect hairs.

Domeription (medior wheker)

Medial section of atherior clypeas strongly projectisg, its margin straight and lateral corners broadly angular. carina weak (Fig. 55). Pronotum and mesumotum a slightly rased even convexity: meanotum witt two distinet groves, the anteriof section of the propodeal darsum leebly concave aniernerly and lecbly convex postariorty propodeal angle widely rounded, posterier face mostly strixight. ratio of dorsum to declivity ahout 1 (Figs (5). Anterior and posterior foces of petiolar node straight: sumimit flat, narow and shaip, sometimes bidentate. its posterior margin leebly concave (Fig. 56). Dorstam and underside of lead, mesorsoma, petiole, cosa and gaster with plenififil seattered enect setac. reduced numbers on propodeal angle and declivity. absent from seapes. flat lynge (on thbac. Head yellowred to dafk browns. amtermae red 10 red-hrown. mesosoma and pode yellow-red to brown; gaster ditiker. logs lighter.

Devcithon (mmen- worfer)

Medial section of antection elypeus strongly proyecung its margin convex, ctormate: warma distinct (Fig. 57). Promolum weakly comvex, antoriot section of mesonotum weakry convex, the remainder
joins with propodeal dorsum to form a long flai surface ending in a widely rounded propodeal angle and short posterior face, ratio of dersum to declivity ahont 3 (Fige 58). Anterion lace of petiolar node mostly convex. summit slapp (in front view pointed). posterior lace mustly Slat (Eig. 58). Dorsum and underside of head, mesosoma, petiole, coxa and gaster with scattered long setac; reduced numbers on propodeal angle and declivity: absent from tihine and scapes. Eutire hody clothed with fine pubesence. Mesosoma yellow-red to dark red-brown, sometimes with darker or lighter patches; head, node and gaster generally darker, leygs lighter;

Meravmencuns

110 kees $\langle 1$ - 20\rangle CT 0.80 (minors) 1.08 (majors); HL. $1.51 \mathrm{~mm}-3.23 \mathrm{~mm}$. If W $1.21 \mathrm{~mm}-3.61 \mathrm{mon}: \mathrm{ML}$ 2.51าแต- $3.83 \mathrm{~mm}:$ MTL 1.92 mm 2. 62 mm : PrW (). 97 rmm - 2.13 mmi ; 510.68 (majurs) - 1.60 (mmors) SL $1.94 \mathrm{~mm}-2.45 \mathrm{~mm}$.

Remarks

This is ane of the mast commonly enteountered and widespread species in this group (Fig 59). In southern Australia nests afe generally mounds approximately 150 to 200 mm in diameter with stecply sloping sides and a flat summit witl the entrance in a slight depression in the centre. These niounds are offen decorared with small stones, Nests are often in heayy soif in open areas and are less eommon or are absent from areas of hight rainfall. Oflen several mounds may bo seen within a few metres of each other.
Morphologically, this species (as conceived hece) shows minmal variatson in body shape and pilosily (wher than that expected for a polymorphie taxon) but does stow considerable variation in colour. The colour ranges from clear yellow-rod to black with essentally all grades of colour in hetween in most cases the colour is uniform within an individual but various degres of infuscation on the mesosoma are common. Also thost variation uccurs belween rather than within nest series althongh the development of infustation does vary within nest series. Finally, this colour variation shows little geographic pattern wath essentially all colour forms being found in all regions, the only exception being nouthern regions of the Northern "Territory where light forms: preatominate.
'The types of C whederkehtl and C wedertehwi Inchlien represent the more lighty coloured forms al this taxon. These two tuxa were separated based of trivial and mon-significant differences in sive. sculpturing and the shape of the anteriof clypeal margen (Forel 1910) and they etearly represent the same baxon Camponomes latrwnzulus represents alt
intermediately coloured form and comprares well with the types of C. wederkehm. Wheeler (1915) was apparently unaware of C whederkehat as he made no mention of it in his description of C. latrunculus and this is Fokely the cause of this synonymy. The final previonsly proposed mume. \therefore deaticulams. represents the dark form of this tasoul. However, it is morphologically very similar to the wher torms placed here and no justification could be tound for treating it as a separate taven.

Spen ies of the C. nerjurus species soroup

Camponotus perjurus sp, nov.
(FIGS 60)-62)

Ahateral chammed

Mnfotype Minor worker from 74 km E by N Cosmu Newberry. Westert Australia. 13 November 1977 1. F. Feehan (ANIC).

Oher material examined. South Australia: Kokm NNF Ceduna (JAF): Emu Camp, Victoria Dekeri (P)M): ML.Gunsom. SL Woomera (PJM). Western Australia: 40km SE Ravensthorpe (RWT). Bordar (EFR),

Worker diagrmosis

Head of minor worker produced upwards so that its Httachmest to the pronotum is well below its uppel margin (Fig 61). Often with weak purple or green indeseent hoe on head and body. The attachment of the head is unigue to this species group. if rot the genus, and will readily separate this speeios liom others.

Towaigition fiminor whefler)

Anterior clypeal margin wide. projecting, evenly convex and feebly crenulate, with a feeble modial earina (Fig. 60). Pronotsm and mesonstum a raised convexity which smoestbly joins, the fecbly concave dorsal surface of the propoderm, the propodeal angle rounded, its pusterior face short and straight, the ration of dorsum lor declivity about 4 (1ig. 61), Metanotal spiracles high, near the dorsal mesosomal surface. Potiolar node leaniug forward. paraltel anteriorly and posteriorly, with a kang, weakly convex sumpil (Fig, 61). Bedy red-browh except for gaster and parts of legs which are daker, sometimes with a weak purple or greed aridescent have. Entire body elothed in line while indistincl pubercence with sparse long setae on the anterior and posterior of head, mesosoma, petiolar mode and guster, absemt on the underside of head

Mecasurements

Minot Hatser (n-5). C1 0.79 - 0.45: 1121.59 mm

 worker, lig. 6l. Mesosomiand petiole of minor worker.
$2.31 \mathrm{~mm} ; H W 1.72 \mathrm{~mm} \quad 1.84 \mathrm{~mm} ;$ ML $2.84 \mathrm{~mm}-$
$3.11 \mathrm{~mm} ;$ MTI $2.32 \mathrm{~mm}-2.43 \mathrm{~mm} ; 1 \mathrm{nW} 1.41 \mathrm{~mm}-$
$1.54 \mathrm{~mm} ; \mathrm{Sl} 1.22 \quad 1.28 ; \mathrm{Sl}, 2.14 \mathrm{~mm}-2.30 \mathrm{~mm}$.

Efynulugy

From previnta, to lie about one's true nature.

Remarks

I his species appears to be a mimic of members of

Fig. 62. Distribution of C: per/arus material examined durney this study.
the livelrmaner purpurens species group (sublamily Dolichoderinae). This is based on the purple or green iridescent colour which is similar to /ridompromex rifdiacmens Viehmeyer (Shatuck 1993). Also. only single fonagers have been lound and mos of these Itave been collected in association with /ridom?vomex spodipilus Shattuck and Compomons ponsseri Shattuck and McArthur. They have been found from central South Australia west into south-central Western Australia (Fig. 62).

Acknowledgments

We would like to thank the following for providing comments on carlier versions of this manuseript: A. Andersen, B. Ilalliday and two amonymous reviewers. The illustrations were prepared by N . Bannett, Financial support was provided by the Ausiralian Biological Resources Study, CSIRO Entomology and the South Australian Muscum.

References

 identilituaion, hiokegy and distribution". Nelbsurne: CSIRO Publisthing. ITIOS pe .
CLarh, J. (1930.s) New Formicidac, "ith motes on some litue-known species. Iroce R Sho I Ic. 43, 2-2,5.
(19.3()b). Some new Ausiralian formicidac. Prok. R. Sm: Vo. 42. 116-128.
(19.38) Reports of the MeCoy Socicty for Ficld lovestigation. and Reseatrth. No. 2. Sir Iosepl Bank Islands. Part I. Formicidac (Ifymenoptera), Frace R. Soce lic. 50, 356-382,
(RAWILV. W, C. (1915) Ants from morth and eentral Austratia, collected by G. F. Hill. Part I. Amw. Mesg. Neft (IV). (8) 15,130 -136.
[ay, M. F. and Pullen. K. R. (1949) Leathonpers in and nests: some aspects of the beladiour of Pogonoscopini (Hemipten: Exymelidar). The Foterion Nommatis 116, 12-15.
Ftokth A. (1894) Quelyues lobmis de Madagascar (reeoleces par M. le Dr. Völıkom): de Nouvelle 7 Êlande (recolises par M. W. W. Smith); de Nonselle Calédouic (reecolies par M. Sommer); de (Queenstanal (Ausiralie) récoltéw pur M. Wiedcrkeht: el de Perti (Australie (eceidentale) recoltes par M. Chase fom. Sore. Eintomot. Bolg. 38. 226237.

\qquad (1922) Glanures mymnécologiques en 1922. Rev: Suisse Zool. 30, 87-102.
frogicint, W, W, (I'896) Honey allits. pp. 385-392 in Spenecr, B. (Ed.) "Report on the work of the Horm Scientific Expedition io Central Australia, Pt. 2 Zoology", Melville, Mullen \& Slacke, Mellourne.
Imal, H. T., Crozier, R. II. and Taylor, R. W. (1977) Karyotype evolution in Australian ants. Chromosoma 59, 341-393.
KIRBY, W. F. (1896) Hymenoplera pp 203-209 In Spenect, B. (ed.) "Report on the work of the Horn Scientific Expedition to Central Australia, P'1. I supplement", Melville, Mullen \& Slade, Melbourne.
Lencit, W. E. (1825) Descriptions of thirteen species of Formica and three species of Culex, finund in the environs ol' Nice, Zoological Journal 2, 289-293.
LoWNE, B. T. (1865) Contributions to the natural history of Ausiralian ants. Entomologist 2, 275-280.
MAYr. G. L. (1862) Myrmecologisehe Studien. Verl. Zool.Bot. Ges. Wien 12, 649-776.
(1876) Die australisehen Formiciden. , denmal des Mirserm Cordeffioy 5,56-115.
(1886) Notizen über die Formiciden-sammlung des British Museum in London. Verth. Zool.-Bot. Gies. Wien 36, 353-368.
McArthur, A. J., Adams, M. \& Shatilick, S. O. (1998) A morphological and molecular review of Camponotus tereframs (Lowne) (Ilymenoptera: Formicidac). Anst. .J. Zool. 45, 579-598.
Santschi, F. (1928) Nouvelles fourmis d'Ausiralic, Bull. Soc. Vaudoise Sct. Nat. 56, 465-483.
Sinatuck, S. O. (1993) Revision of the Iridomitmex purpureus species group (Hymenoplera: Formicidie). Inverteln. Taxom. 7, 113-149.
(1999) Australian ants: their biology and identification. Monographs on Invertetrate Taronomy 3. 1-226.
Smith, F. (1858) "Catalogue ol hymenopterous inseets in the collection of the British Muscum. Part 6. Formicidac", London: British Museum. 216 pp .
Wheeler, W. M. (1915) 1 ymmenoptera. Trans. R. Soc. S. Aust. 39, 805-823.

[^0]: Anserslis

